Integral kernels for k-hypermonogenic functions

Show full item record



Permalink

http://hdl.handle.net/10138/307307

Citation

Vuojamo , V & Eriksson , S-L 2017 , ' Integral kernels for k-hypermonogenic functions ' , Complex Variables and Elliptic Equations , vol. 62 , no. 9 , pp. 1254-1265 . https://doi.org/10.1080/17476933.2016.1250402

Title: Integral kernels for k-hypermonogenic functions
Author: Vuojamo, Vesa; Eriksson, Sirkka-Liisa
Contributor organization: Department of Mathematics and Statistics
Date: 2017
Language: eng
Number of pages: 12
Belongs to series: Complex Variables and Elliptic Equations
ISSN: 1747-6933
DOI: https://doi.org/10.1080/17476933.2016.1250402
URI: http://hdl.handle.net/10138/307307
Abstract: We consider the modified Cauchy- Riemann operator M-k = Sigma(n)(i=0)=0(ei partial derivative xi) + k/xn Q' in the universal Clifford algebra Cl-0,Cl-n with the basis e1, ... ,en. The null- solutions of this operator are called k-hypermonogenic functions. We calculate the k- hyperbolic harmonic fundamental solutions, i. e. solutions to M-k(M)over bar(k)f = 0, and use these solutions to find k-hypermonogenic kernels for a Cauchy-type integral formula in the upper half-space.
Subject: k-hypermonogenic
k-hyperbolic harmonic
hyperbolic Laplace-Beltrami
Clifford algebra
Cauchy integral formula
FORMULAS
111 Mathematics
Peer reviewed: Yes
Usage restriction: openAccess
Self-archived version: acceptedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
IntegralKernelsoma.pdf 146.8Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record