Computational Comparison of Acetate and Nitrate Chemical Ionization of Highly Oxidized Cyclohexene Ozonolysis Intermediates and Products

Show full item record



Permalink

http://hdl.handle.net/10138/307393

Citation

Hyttinen , N , Rissanen , M P & Kurten , T 2017 , ' Computational Comparison of Acetate and Nitrate Chemical Ionization of Highly Oxidized Cyclohexene Ozonolysis Intermediates and Products ' , Journal of Physical Chemistry A , vol. 121 , no. 10 , pp. 2172-2179 . https://doi.org/10.1021/acs.jpca.6b12654

Title: Computational Comparison of Acetate and Nitrate Chemical Ionization of Highly Oxidized Cyclohexene Ozonolysis Intermediates and Products
Author: Hyttinen, Noora; Rissanen, Matti P.; Kurten, Theo
Contributor organization: Department of Chemistry
Department of Physics
Date: 2017-03-16
Language: eng
Number of pages: 8
Belongs to series: Journal of Physical Chemistry A
ISSN: 1089-5639
DOI: https://doi.org/10.1021/acs.jpca.6b12654
URI: http://hdl.handle.net/10138/307393
Abstract: During the past few years nitrate chemical ionization has been used to detect highly oxidized products from OH-and O-3-initiated alkene autoxidation. These have been speculated to play a significant role in atmospheric aerosol formation. As less oxidized autoxidation products have not been detected using nitrate chemical ionization, and the absolute concentrations of the highly oxidized species are as yet unknown, other reagent ions, such as acetate, are needed both to verify the detection efficiency of nitrate chemical ionization and to measure the less oxidized compounds. Here we compare the formation free energies of the acetate and nitrate clusters of several atmospherically relevant RO2 intermediates and products derived from cyclohexene ozonolysis, calculated at the omega B97xD/aug-cc-pVTZ level of theory. We found that, for the molecules with one hydrogen bonding peroxy acid group, the binding with nitrate is on average 7.5 kcal/mol weaker than with acetate and the binding is on average 10.5 kcal/mol weaker for molecules with two hydrogen bonding peroxy acid groups. We also calculated the deprotonation energies of the RO2 intermediates and the closed-shell products and found that acetate is able to deprotonate almost all of these molecules, while deprotonation with nitrate is (as expected for the conjugate base of a strong acid) not favorable.
Subject: SECONDARY ORGANIC AEROSOL
FLIGHT MASS-SPECTROMETER
GAS-PHASE OZONOLYSIS
PEROXY-RADICALS
RO2 RADICALS
MULTIFUNCTIONAL COMPOUNDS
BETA-CARYOPHYLLENE
PARTICLE GROWTH
SULFURIC-ACID
ATMOSPHERE
116 Chemical sciences
114 Physical sciences
Peer reviewed: Yes
Usage restriction: openAccess
Self-archived version: acceptedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
nitrate_acetate ... mitted_revised_version.pdf 834.7Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record