Asteroid mass estimation using Markov-chain Monte Carlo

Visa fullständig post



Siltala , L & Granvik , M 2017 , ' Asteroid mass estimation using Markov-chain Monte Carlo ' , Icarus , vol. 297 , pp. 149-159 .

Titel: Asteroid mass estimation using Markov-chain Monte Carlo
Författare: Siltala, Lauri; Granvik, Mikael
Upphovmannens organisation: Department of Physics
Datum: 2017-11-15
Språk: eng
Sidantal: 11
Tillhör serie: Icarus
ISSN: 0019-1035
Permanenta länken (URI):
Abstrakt: Estimates for asteroid masses are based on their gravitational perturbations on the orbits of other objects such as Mars, spacecraft, or other asteroids and/or their satellites. In the case of asteroid-asteroid perturbations, this leads to an inverse problem in at least 13 dimensions where the aim is to derive the mass of the perturbing asteroid(s) and six orbital elements for both the perturbing asteroid(s) and the test asteroid(s) based on astrometric observations. We have developed and implemented three different mass estimation algorithms utilizing asteroid-asteroid perturbations: the very rough 'marching' approximation, in which the asteroids' orbital elements are not fitted, thereby reducing the problem to a one-dimensional estimation of the mass, an implementation of the Nelder-Mead simplex method, and most significantly, a Markov-chain Monte Carlo (MCMC) approach. We describe each of these algorithms with particular focus on the MCMC algorithm, and present example results using both synthetic and real data. Our results agree with the published mass estimates, but suggest that the published uncertainties may be misleading as a consequence of using linearized mass-estimation methods. Finally, we discuss remaining challenges with the algorithms as well as future plans. (C) 2017 Elsevier Inc. All rights reserved.
Subject: Asteroids
Orbit determination
Celestial mechanics
115 Astronomy, Space science
Referentgranskad: Ja
Licens: other
Användningsbegränsning: openAccess
Parallelpublicerad version: acceptedVersion

Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
1706.09208.pdf 3.392Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post