Tight lower bounds for the longest common extension problem

Visa fullständig post




Kosolobov , D 2017 , ' Tight lower bounds for the longest common extension problem ' , Information Processing Letters , vol. 125 , pp. 26-29 . https://doi.org/10.1016/j.ipl.2017.05.003

Titel: Tight lower bounds for the longest common extension problem
Författare: Kosolobov, Dmitry
Medarbetare: University of Helsinki, Department of Computer Science
Datum: 2017-09
Språk: eng
Sidantal: 4
Tillhör serie: Information Processing Letters
ISSN: 0020-0190
Permanenta länken (URI): http://hdl.handle.net/10138/307544
Abstrakt: The longest common extension problem is to preprocess a given string of length n into a data structure that uses S(n) bits on top of the input and answers in T(n) time the queries LCE(i, j) computing the length of the longest string that occurs at both positions i and j in the input. We prove that the trade-off S (n)T (n) = (it logn) holds in the non-uniform cell-probe model provided that the input string is read-only, each letter occupies a separate memory cell, S(n) = Omega(n), and the size of the input alphabet is at least 2(8inverted right perpendicularS(n)/ninverted left perpendicular). It is known that this trade-off is tight. (C) 2017 Elsevier B.V. All rights reserved.
Subject: Longest common extension
Data structures
Lower bounds
Cell-probe model
113 Computer and information sciences

Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
1611.02891.pdf 110.3Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post