A peek at homological algebra viagroup cohomology

Visa fullständig post



Permalänk

http://urn.fi/URN:NBN:fi:hulib-201912114103
Titel: A peek at homological algebra viagroup cohomology
Författare: Saarinen, Tapio
Medarbetare: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Utgivare: Helsingin yliopisto
Datum: 2019
Språk: eng
Permanenta länken (URI): http://urn.fi/URN:NBN:fi:hulib-201912114103
http://hdl.handle.net/10138/308245
Nivå: pro gradu-avhandlingar
Utbildningsprogram: Matematiikan ja tilastotieteen maisteriohjelma
Master's Programme in Mathematics and Statistics
Magisterprogrammet i matematik och statistik
Studieinriktning: Matematiikka
Mathematics
Matematik
Ämne: none
Abstrakt: Tutkielman tarkoituksena on johdattaa lukija Ext-funktorin ja ryhmien kohomologian määritelmien ja teorian äärelle ja siten tutustuttaa lukija homologisen algebran keskeisiin käsitteisiin. Ensimmäisessä luvussa esitellään tutkielman olettamia taustatietoja, algebran ja algebrallisen topologian peruskurssien sisältöjen lisäksi. Toisessa luvussa esitellään ryhmien laajennosongelma ja ratkaistaan se tapauksessa, jossa annettu aliryhmä on vaihdannainen. Ryhmälaajennosten näytetään olevan yksi yhteen -vastaavuudessa tietyn ryhmän alkioiden kanssa, ja lisäksi tutkitaan erityisesti niitä ryhmälaajennoksia, jotka ovat annettujen ryhmien puolisuoria tuloja. Vastaan tulevien kaavojen todetaan vastaavan eräitä singulaarisen koketjukompleksin määritelmässä esiintyviä kaavoja. Kolmannessa luvussa määritellään viivaresoluutio sekä normalisoitu viivaresoluutio, sekä niiden pohjalta ryhmien kohomologia. Aluksi määritellään teknisenä sivuseikkana G-modulin käsite, jonka avulla ryhmien toimintoja voi käsitellä kuten moduleita. Luvun keskeisin tulos on se, että viivaresoluutio ja normalisoitu viivaresoluutio ovat homotopiaekvivalentit -- tuloksen yleistys takaa muun muassa, että Ext-funktori on hyvin määritelty. Luvun lopuksi lasketaan syklisen ryhmän kohomologiaryhmät. Neljännessä luvussa määritellään resoluutiot yleisyydessään, sekä projektiiviset että injektiiviset modulit ja resoluutiot. Viivaresoluutiot todetaan projektiivisiksi, ja niiden homotopiatyyppien samuuden todistuksen todetaan yleistyvän projektiivisille ja injektiivisille resoluutioille. Samalla ryhmien kohomologian määritelmä laajenee, kun viivaresoluution voi korvata millä tahansa projektiivisella resoluutiolla. Luvussa määritellään myös funktorien eksaktisuus, ja erityisesti tutkitaan Hom-funktorin eksaktiuden yhteyttä projektiivisiin ja injektiivisiin moduleihin. Viidennessä luvussa määritellään oikealta johdetun funktorin käsite, ja sen erikoistapauksena Ext-funktori, joka on Hom-funktorin oikealta johdettu funktori. Koska Hom-funktori on bifunktori, on sillä kaksi oikealta johdettua funktoria, ja luvun tärkein tulos osoittaa, että ne ovat isomorfiset. Ryhmien kohomologian määritelmä laajenee entisestään, kun sille annetaan määritelmä Ext-funktorin avulla, mikä mahdollistaa ryhmien kohomologian laskemisen myös injektiivisten resoluutioiden kautta. Viimeiseen lukuun on koottu aiheeseen liittyviä asioita, joita tekstissä hipaistaan, mutta joiden käsittely jäi rajaussyistä tutkielman ulkopuolelle.


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Saarinen_Tapio_Pro_gradu_2019.pdf 625.0Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post