Methods for Learning Directed and Undirected Graphical Models

Show full item record



Permalink

http://urn.fi/URN:ISBN:978-951-51-5772-0
Title: Methods for Learning Directed and Undirected Graphical Models
Author: Leppä-aho, Janne
Contributor: University of Helsinki, Faculty of Science, Department of Computer Science
Doctoral Programme in Computer Science
Helsinki Institute for Information Technology HIIT
Publisher: Helsingin yliopisto
Date: 2020-01-24
URI: http://urn.fi/URN:ISBN:978-951-51-5772-0
http://hdl.handle.net/10138/309000
Thesis level: Doctoral dissertation (article-based)
Abstract: Probabilistic graphical models provide a general framework for modeling relationships between multiple random variables. The main tool in this framework is a mathematical object called graph which visualizes the assertions of conditional independence between the variables. This thesis investigates methods for learning these graphs from observational data. Regarding undirected graphical models, we propose a new scoring criterion for learning a dependence structure of a Gaussian graphical model. The scoring criterion is derived as an approximation to often intractable Bayesian marginal likelihood. We prove that the scoring criterion is consistent and demonstrate its applicability to high-dimensional problems when combined with an efficient search algorithm. Secondly, we present a non-parametric method for learning undirected graphs from continuous data. The method combines a conditional mutual information estimator with a permutation test in order to perform conditional independence testing without assuming any specific parametric distributions for the involved random variables. Accompanying this test with a constraint-based structure learning algorithm creates a method which performs well in numerical experiments when the data generating mechanisms involve non-linearities. For directed graphical models, we propose a new scoring criterion for learning Bayesian network structures from discrete data. The criterion approximates a hard-to-compute quantity called the normalized maximum likelihood. We study the theoretical properties of the score and compare it experimentally to popular alternatives. Experiments show that the proposed criterion provides a robust and safe choice for structure learning and prediction over a wide variety of different settings. Finally, as an application of directed graphical models, we derive a closed form expression for Bayesian network Fisher kernel. This provides us with a similarity measure over discrete data vectors, capable of taking into account the dependence structure between the components. We illustrate the similarity measured by this kernel with an example where we use it to seek sets of observations that are important and representative of the underlying Bayesian network model.Graafiset todennäköisyysmallit ovat yleispätevä tapa mallintaa yhteyksiä usean satunnaismuuttujan välillä. Keskeinen työkalu näissä malleissa on verkko, eli graafi, jolla voidaan visuaalisesti esittää muuttujien välinen riippuvuusrakenne. Tämä väitöskirja käsittelee erilaisia menetelmiä suuntaamattomien ja suunnattujen verkkojen oppimiseen havaitusta aineistosta. Liittyen suuntaamattomiin verkkoihin, tässä työssä esitellään kaksi erilaisiin tilanteisiin soveltuvaa menetelmää verkkojen rakenteen oppimiseen. Ensiksi esitellään mallinvalintakriteeri, jolla voidaan oppia verkkojen rakenteita muuttujien ollessa normaalijakautuneita. Kriteeri johdetaan approksimaationa usein laskennallisesti vaativalle bayesiläiselle marginaaliuskottavuudelle (marginal likelihood). Työssä tutkitaan kriteerin teoreettisia ominaisuuksia ja näytetään kokeellisesti, että se toimii hyvin tilanteissa, joissa muuttujien määrä on suuri. Toinen esiteltävä menetelmä on ei-parametrinen, tarkoittaen karkeasti, että emme tarvitse tarkkoja oletuksia syötemuuttujien jakaumasta. Menetelmä käyttää hyväkseen aineistosta estimoitavia informaatioteoreettisia suureita sekä permutaatiotestiä. Kokeelliset tulokset osoittavat, että menetelmä toimii hyvin, kun riippuvuudet syöteaineiston muuttujien välillä ovat epälineaarisia. Väitöskirjan toinen osa käsittelee Bayes-verkkoja, jotka ovat suunnattuja graafisia malleja. Työssä esitellään uusi mallinvalintakriteeri Bayes-verkkojen oppimiseen diskreeteille muuttujille. Tätä kriteeriä tutkitaan teoreettisesti sekä verrataan kokeellisesti muihin yleisesti käytettyihin mallinvalintakriteereihin. Väitöskirjassa esitellään viimeisenä sovellus suunnatuille graafisille malleille johtamalla Bayes-verkkoon pohjautuva Fisher-ydin (Fisher kernel). Saatua Fisher-ydintä voidaan käyttää mittaamaan datavektoreiden samankaltaisuutta ottaen huomioon riippuvuudet vektoreiden komponenttien välillä, mitä havainnollistetaan kokeellisesti.
Subject: Computer Science
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
Methodsf.pdf 675.3Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record