Isotopic and Compositional Variations in Single Nuclear Fuel Pellet Particles Analyzed by Nanoscale Secondary Ion Mass Spectrometry

Show full item record



Permalink

http://hdl.handle.net/10138/309573

Citation

Fallon , C M , Bower , W R , Lyon , I C , Livens , F R , Thompson , P , Higginson , M , Collins , J , Heath , S L & Law , G T W 2020 , ' Isotopic and Compositional Variations in Single Nuclear Fuel Pellet Particles Analyzed by Nanoscale Secondary Ion Mass Spectrometry ' , ACS Omega , vol. 5 , no. 1 , pp. 296-303 . https://doi.org/10.1021/acsomega.9b02703

Title: Isotopic and Compositional Variations in Single Nuclear Fuel Pellet Particles Analyzed by Nanoscale Secondary Ion Mass Spectrometry
Author: Fallon, Connaugh M.; Bower, William R.; Lyon, Ian C.; Livens, Francis R.; Thompson, Paul; Higginson, Matthew; Collins, Jane; Heath, Sarah L.; Law, Gareth T. W.
Contributor: University of Helsinki, Department of Chemistry
University of Helsinki, Department of Chemistry
Date: 2020-01-14
Language: eng
Number of pages: 8
Belongs to series: ACS Omega
ISSN: 2470-1343
URI: http://hdl.handle.net/10138/309573
Abstract: The Collaborative Materials Exercise (CMX) is organized by the Nuclear Forensics International Technical Working Group, with the aim of advancing the analytical capabilities of the participating organizations and providing feedback on the best approaches to a nuclear forensic investigation. Here, model nuclear fuel materials from the 5th CMX iteration were analyzed using a NanoSIMS 50L (CAMECA) in order to examine inhomogeneities in the 235U/238U ratio and trace element abundance within individual, micrometer scale particles. Two fuel pellets were manufactured for the exercise and labelled CMX-5A and CMX-5B. These pellets were created using different processing techniques, but both had a target enrichment value of 235U/238U = 0.01. Particles from these pellets were isolated for isotopic and trace element analysis. Fifteen CMX-5A particles and 20 CMX-5B particles were analyzed, with both sample types displaying inhomogeneities in the U isotopic composition at a sub-micrometer scale within individual particles. Typical particle diameters were ∼1.5 to 41 μm for CMX-5A and ∼1 to 61 μm for CMX-5B. The CMX-5A particles were shown to be more isotopically homogeneous, with a mean 235U/238U atom ratio of 0.0130 ± 0.0066. The CMX-5B particles showed a predominantly depleted mean 235U/238U atom ratio of 0.0063 ± 0.0094, which is significantly different to the target enrichment value of the pellet and highlights the potential variation of 235U/238U in U fuel pellets at the micrometer scale. This study details the successful application of the NanoSIMS 50L in a mock nuclear forensic investigation by optimizing high- resolution imaging for uranium isotopics.
Subject: 116 Chemical sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
acsomega.9b02703.pdf 4.969Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record