Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia?

Show full item record



Permalink

http://hdl.handle.net/10138/309757

Citation

Pekkala , S , Keskitalo , A , Kettunen , E , Lensu , S , Nykänen , N , Kuopio , T , Ritvos , O , Hentilä , J , Nissinen , T A & Hulmi , J J 2019 , ' Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia? ' , Cancers , vol. 11 , no. 11 , 1799 . https://doi.org/10.3390/cancers11111799

Title: Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia?
Author: Pekkala, Satu; Keskitalo, Anniina; Kettunen, Emilia; Lensu, Sanna; Nykänen, Noora; Kuopio, Teijo; Ritvos, Olli; Hentilä, Jaakko; Nissinen, Tuuli A.; Hulmi, Juha J.
Other contributor: University of Helsinki, Department of Physiology




Date: 2019-11
Language: eng
Number of pages: 23
Belongs to series: Cancers
ISSN: 2072-6694
DOI: https://doi.org/10.3390/cancers11111799
URI: http://hdl.handle.net/10138/309757
Abstract: Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
Subject: inflammation
activin
myostatin
microbiome
IL6
CCL2
MCP-1
COLON-CANCER
TUMOR MICROENVIRONMENT
ENTEROCOCCUS-FAECALIS
IL-6 EXPRESSION
SKELETAL-MUSCLE
MOUSE MODELS
INFLAMMATION
PATHWAY
INTERLEUKIN-6
ACTIVATION
3122 Cancers
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
cancers_11_01799.pdf 3.506Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record