Projecting named entity recognizers from resource-rich to resource-poor languages without annotated or parallel corpora

Visa fullständig post



Permalänk

http://urn.fi/URN:NBN:fi:hulib-202001211120
Titel: Projecting named entity recognizers from resource-rich to resource-poor languages without annotated or parallel corpora
Författare: Hou, Jue
Medarbetare: Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Utgivare: Helsingin yliopisto
Datum: 2019
Språk: eng
Permanenta länken (URI): http://urn.fi/URN:NBN:fi:hulib-202001211120
http://hdl.handle.net/10138/310012
Nivå: pro gradu-avhandlingar
Ämne: Tietojenkäsittelytiede
Abstrakt: Named entity recognition is a challenging task in the field of NLP. As other machine learning problems, it requires a large amount of data for training a workable model. It is still a problem for languages such as Finnish due to the lack of data in linguistic resources. In this thesis, I propose an approach to automatic annotation in Finnish with limited linguistic rules and data of resource-rich language, English, as reference. Training with BiLSTM-CRF model, the preliminary result shows that automatic annotation can produce annotated instances with high accuracy and the model can achieve good performance for Finnish. In addition to automatic annotation and NER model training, to show the actual application of my Finnish NER model, two related experiments are conducted and discussed at the end of my thesis.


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Jue_Hou-Master_s_Thesis-v2.1.pdf 1.067Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post