Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion

Show full item record



Permalink

http://hdl.handle.net/10138/310165

Citation

Kurppa , M , Lange , M J , Suominen , H J , Oikarinen , E , Savvides , R , Järvi , L & Puolamäki , K 2019 , Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion . in T Laurila , A Lintunen & M Kulmala (eds) , Proceedings of The Center of Excellence in Atmospheric Science (CoE ATM) Annual Seminar 2019 . Report Series in Aerosol Science , no. 226 (2019) , Finnish Association for Aerosol Research, FAAR , Helsinki , pp. 363-365 , Annual Seminar of Center of Excellence in Atmospheric Sciences , Helsinki , Finland , 25/11/2019 .

Title: Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion
Author: Kurppa, Mona; Lange, Moritz Johannes; Suominen, Henri Johannes; Oikarinen, Emilia; Savvides, Rafael; Järvi, Leena; Puolamäki, Kai
Editor: Laurila, Tiia; Lintunen, Anna; Kulmala, Markku
Contributor: University of Helsinki, INAR Physics
University of Helsinki, Department of Computer Science
University of Helsinki, Department of Computer Science
University of Helsinki, Department of Computer Science
University of Helsinki, Department of Computer Science
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Helsinki Institute for Information Technology
Publisher: Finnish Association for Aerosol Research, FAAR
Date: 2019
Language: eng
Number of pages: 3
Belongs to series: Proceedings of The Center of Excellence in Atmospheric Science (CoE ATM) Annual Seminar 2019
Belongs to series: Report Series in Aerosol Science
ISBN: 978-952-7276-34-1
URI: http://hdl.handle.net/10138/310165
Subject: 113 Computer and information sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
Applying_machine_learning_to_replicate.pdf 106.8Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record