Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion

Show full item record



Permalink

http://hdl.handle.net/10138/310165

Citation

Kurppa , M , Lange , M J , Suominen , H J , Oikarinen , E , Savvides , R , Järvi , L & Puolamäki , K 2019 , Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion . in T Laurila , A Lintunen & M Kulmala (eds) , Proceedings of The Center of Excellence in Atmospheric Science (CoE ATM) Annual Seminar 2019 . Report Series in Aerosol Science , no. 226 (2019) , Finnish Association for Aerosol Research, FAAR , Helsinki , pp. 363-365 , Annual Seminar of Center of Excellence in Atmospheric Sciences , Helsinki , Finland , 25/11/2019 .

Title: Applying machine learning to replicate large-eddy simulation results on urban pollutant dispersion
Author: Kurppa, Mona; Lange, Moritz Johannes; Suominen, Henri Johannes; Oikarinen, Emilia; Savvides, Rafael; Järvi, Leena; Puolamäki, Kai
Other contributor: Laurila, Tiia
Lintunen, Anna
Kulmala, Markku
Contributor organization: INAR Physics
Urban meteorology
Department of Computer Science
Institute for Atmospheric and Earth System Research (INAR)
Helsinki Institute of Sustainability Science (HELSUS)
Helsinki Institute of Urban and Regional Studies (Urbaria)
Helsinki Institute for Information Technology
Publisher: Finnish Association for Aerosol Research, FAAR
Date: 2019
Language: eng
Number of pages: 3
Belongs to series: Proceedings of The Center of Excellence in Atmospheric Science (CoE ATM) Annual Seminar 2019
Belongs to series: Report Series in Aerosol Science
ISBN: 978-952-7276-34-1
ISSN: 0784-3496
URI: http://hdl.handle.net/10138/310165
Subject: 113 Computer and information sciences
Peer reviewed: No
Usage restriction: openAccess
Self-archived version: publishedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
Applying_machine_learning_to_replicate.pdf 106.8Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record