A Rapid Soft Computing Approach to Dimensionality Reduction in Model Construction

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/310422

Citation

Niskanen , V A 2017 , A Rapid Soft Computing Approach to Dimensionality Reduction in Model Construction . in J Kacprzyk & V Kreinovich (eds) , Uncertainty Modeling : Dedicated to Professor Boris Kovalerchuk on his Anniversary . Studies in Computational Intelligence , vol. 683 , Springer-Verlag , Cham , pp. 169-191 . https://doi.org/10.1007/978-3-319-51052-1_12

Titel: A Rapid Soft Computing Approach to Dimensionality Reduction in Model Construction
Författare: Niskanen, Vesa A.
Medarbetare: Kacprzyk, J
Kreinovich, V.
Upphovmannens organisation: Department of Economics and Management
Utgivare: Springer-Verlag
Datum: 2017
Språk: eng
Sidantal: 22
Tillhör serie: Uncertainty Modeling
Tillhör serie: Studies in Computational Intelligence
ISBN: 978-3-319-51051-4
978-3-319-51052-1
ISSN: 1860-949X
DOI: https://doi.org/10.1007/978-3-319-51052-1_12
Permanenta länken (URI): http://hdl.handle.net/10138/310422
Abstrakt: A rapid soft computing method for dimensionality reduction of data sets is presented. Traditional approaches usually base on factor or principal component analysis. Our method applies fuzzy cluster analysis and approximate reasoning instead, and thus it is also viable to nonparametric and nonlinear models. Comparisons are drawn between the methods with two empiric data sets.
Subject: 113 Computer and information sciences
112 Statistics and probability
Dimension reduction
Factor analysis
Principal component analysis
Fuzzy cluster anal ysis
Fuzzy reasoning
Referentgranskad: Ja
Licens: unspecified
Användningsbegränsning: openAccess
Parallelpublicerad version: acceptedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Borisbook_Niskanen15.pdf 514.1Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post