Gerl , M J , Klose , C , Surma , M A , Fernandez , C , Melander , O , Männistö , S , Borodulin , K , Havulinna , A S , Salomaa , V , Ikonen , E , Cannistraci , C V & Simons , K 2019 , ' Machine learning of human plasma lipidomes for obesity estimation in a large population cohort ' , PLoS Biology , vol. 17 , no. 10 , e3000443 . https://doi.org/10.1371/journal.pbio.3000443
Title: | Machine learning of human plasma lipidomes for obesity estimation in a large population cohort |
Author: | Gerl, Mathias J.; Klose, Christian; Surma, Michal A.; Fernandez, Celine; Melander, Olle; Männistö, Satu; Borodulin, Katja; Havulinna, Aki S.; Salomaa, Veikko; Ikonen, Elina; Cannistraci, Carlo V.; Simons, Kai |
Contributor organization: | Institute for Molecular Medicine Finland Complex Disease Genetics Helsinki Institute of Life Science HiLIFE Lipid Trafficking Lab Department of Anatomy Medicum Faculty of Medicine University of Helsinki |
Date: | 2019-10-18 |
Language: | eng |
Number of pages: | 25 |
Belongs to series: | PLoS Biology |
ISSN: | 1544-9173 |
DOI: | https://doi.org/10.1371/journal.pbio.3000443 |
URI: | http://hdl.handle.net/10138/310640 |
Abstract: | Obesity is associated with changes in plasma lipids, but while simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. A machine learning study based on lipidomes of a total of 1,311 individuals reveals improved associations of plasma lipids with total body fat and fat distribution compared to routine clinical laboratory variables. |
Subject: |
BODY-MASS INDEX
COA DESATURASE ACTIVITY FATTY-ACIDS HIGH-THROUGHPUT RISK OVERWEIGHT DIVERSITY MORTALITY EVENTS MODELS 3111 Biomedicine 1182 Biochemistry, cell and molecular biology |
Peer reviewed: | Yes |
Rights: | cc_by |
Usage restriction: | openAccess |
Self-archived version: | publishedVersion |
Total number of downloads: Loading...
Files | Size | Format | View |
---|---|---|---|
journal.pbio.3000443.pdf | 1.718Mb |
View/ |
|
journal.pbio.3000443.pdf | 1.851Mb |
View/ |