Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.)

Show full item record



Permalink

http://hdl.handle.net/10138/310916

Citation

Chauvigné , A , Aliaga , D , Sellegri , K , Montoux , N , Krejci , R , Močnik , G , Moreno , I , Müller , T , Pandolfi , M , Velarde , F , Weinhold , K , Ginot , P , Wiedensohler , A , Andrade , M & Laj , P 2019 , ' Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.) ' , Atmospheric Chemistry and Physics , vol. 19 , no. 23 , pp. 14805-14824 . https://doi.org/10.5194/acp-19-14805-2019

Title: Biomass burning and urban emission impacts in the Andes Cordillera region based on in situ measurements from the Chacaltaya observatory, Bolivia (5240 m a.s.l.)
Author: Chauvigné, Aurélien; Aliaga, Diego; Sellegri, Karine; Montoux, Nadège; Krejci, Radovan; Močnik, Griša; Moreno, Isabel; Müller, Thomas; Pandolfi, Marco; Velarde, Fernando; Weinhold, Kay; Ginot, Patrick; Wiedensohler, Alfred; Andrade, Marcos; Laj, Paolo
Contributor: University of Helsinki, INAR Physics
Date: 2019-12-10
Language: eng
Number of pages: 20
Belongs to series: Atmospheric Chemistry and Physics
ISSN: 1680-7316
URI: http://hdl.handle.net/10138/310916
Abstract: This study documents and analyses a 4-year continuous record of aerosol optical properties measured at the Global Atmosphere Watch (GAW) station of Chacaltaya (CHC; 5240 m a.s.l.), in Bolivia. Records of particle light scattering and particle light absorption coefficients are used to investigate how the high Andean Cordillera is affected by both long-range transport and by the fast-growing agglomeration of La Paz-El Alto, located approximately 20 km away and 1.5 km below the sampling site. The extended multiyear record allows us to study the properties of aerosol particles for different air mass types, during wet and dry seasons, also covering periods when the site was affected by biomass burning in the Bolivian lowlands and the Amazon Basin. The absorption, scattering, and extinction coefficients (median annual values of 0.74, 12.14, and 12.96 Mm(-1) respectively) show a clear seasonal variation with low values during the wet season (0.57, 7.94, and 8.68 Mm(-1) respectively) and higher values during the dry season (0.80, 11.23, and 14.51 Mm(-1) respectively). The record is driven by variability at both seasonal and diurnal scales. At a diurnal scale, all records of intensive and extensive aerosol properties show a pronounced variation (daytime maximum, night-time minimum), as a result of the dynamic and convective effects. The particle light absorption, scattering, and extinction coefficients are on average 1.94, 1.49, and 1.55 times higher respectively in the turbulent thermally driven conditions than the more stable conditions, due to more efficient transport from the boundary layer. Retrieved intensive optical properties are significantly different from one season to the other, reflecting the changing aerosol emission sources of aerosol at a larger scale. Using the wavelength dependence of aerosol particle optical properties, we discriminated between contributions from natural (mainly mineral dust) and anthropogenic (mainly biomass burning and urban transport or industries) emissions according to seasons and local circulation. The main sources influencing measurements at CHC are from the urban area of La Paz-El Alto in the Altiplano and from regional biomass burning in the Amazon Basin. Results show a 28 % to 80 % increase in the extinction coefficients during the biomass burning season with respect to the dry season, which is observed in both tropospheric dynamic conditions. From this analysis, long-term observations at CHC provide the first direct evidence of the impact of biomass burning emissions of the Amazon Basin and urban emissions from the La Paz area on atmospheric optical properties at a remote site all the way to the free troposphere.
Subject: AEROSOL OPTICAL-PROPERTIES
HIGH-ALTITUDE STATION
BLACK CARBON
ABSORPTION-COEFFICIENT
LIGHT-ABSORPTION
FREE TROPOSPHERE
SAHARAN DUST
AMAZON BASIN
AETHALOMETER
TRANSPORT
1172 Environmental sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
acp_19_14805_2019.pdf 6.318Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record