dc.contributor.author |
Talman, Aarne |
|
dc.contributor.author |
Suni, Antti |
|
dc.contributor.author |
Celikkanat, Hande |
|
dc.contributor.author |
Kakouros, Sofoklis |
|
dc.contributor.author |
Tiedemann, Jörg |
|
dc.contributor.author |
Vainio, Martti |
|
dc.contributor.editor |
Hartmann, Mareike |
|
dc.contributor.editor |
Plank, Barbara |
|
dc.date.accessioned |
2020-02-18T11:35:03Z |
|
dc.date.available |
2020-02-18T11:35:03Z |
|
dc.date.issued |
2019-09-30 |
|
dc.identifier.citation |
Talman , A , Suni , A , Celikkanat , H , Kakouros , S , Tiedemann , J & Vainio , M 2019 , Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations . in M Hartmann & B Plank (eds) , 22nd Nordic Conference on Computational Linguistics (NoDaLiDa) : Proceedings of the Conference . Linköping Electronic Conference Proceedings , no. 167 , NEALT Proceedings Series , no. 42 , Linköping University Electronic Press , Linköping , pp. 281–290 , Nordic Conference on Computational Linguistics , Turku , Finland , 30/09/2019 . |
|
dc.identifier.citation |
conference |
|
dc.identifier.other |
PURE: 132263108 |
|
dc.identifier.other |
PURE UUID: e7f78b80-371d-4925-a8b6-66b34de47073 |
|
dc.identifier.other |
ORCID: /0000-0003-2570-0196/work/70947223 |
|
dc.identifier.other |
ORCID: /0000-0001-8996-0793/work/70953390 |
|
dc.identifier.other |
ORCID: /0000-0003-3065-7989/work/70953439 |
|
dc.identifier.other |
ORCID: /0000-0002-3573-5993/work/70953456 |
|
dc.identifier.other |
ORCID: /0000-0003-2858-5867/work/70953502 |
|
dc.identifier.uri |
http://hdl.handle.net/10138/311873 |
|
dc.description.abstract |
In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models are publicly available. |
en |
dc.format.extent |
10 |
|
dc.language.iso |
eng |
|
dc.publisher |
Linköping University Electronic Press |
|
dc.relation.ispartof |
22nd Nordic Conference on Computational Linguistics (NoDaLiDa) |
|
dc.relation.ispartofseries |
Linköping Electronic Conference Proceedings |
|
dc.relation.ispartofseries |
NEALT Proceedings Series |
|
dc.relation.isversionof |
978-91-7929-995-8 |
|
dc.rights |
cc_by |
|
dc.rights.uri |
info:eu-repo/semantics/openAccess |
|
dc.subject |
113 Computer and information sciences |
|
dc.subject |
Natural language processing |
|
dc.subject |
6121 Languages |
|
dc.title |
Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations |
en |
dc.type |
Conference contribution |
|
dc.contributor.organization |
Department of Digital Humanities |
|
dc.contributor.organization |
Language Technology |
|
dc.contributor.organization |
Phonetics |
|
dc.contributor.organization |
Phonetics and Speech Synthesis |
|
dc.contributor.organization |
Mind and Matter |
|
dc.description.reviewstatus |
Peer reviewed |
|
dc.relation.issn |
1650-3686 |
|
dc.rights.accesslevel |
openAccess |
|
dc.type.version |
publishedVersion |
|