Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis

Show full item record



Permalink

http://hdl.handle.net/10138/312131

Citation

Taipale , S J , Peltomaa , E , Kukkonen , J V K , Kainz , M J , Kautonen , P & Tiirola , M 2019 , ' Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis ' , Scientific Reports , vol. 9 , 19894 . https://doi.org/10.1038/s41598-019-55990-2

Title: Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis
Author: Taipale, S. J.; Peltomaa, E.; Kukkonen, J. V. K.; Kainz, M. J.; Kautonen, P.; Tiirola, M.
Contributor: University of Helsinki, Department of Forest Sciences
Date: 2019-12-27
Language: eng
Number of pages: 15
Belongs to series: Scientific Reports
ISSN: 2045-2322
URI: http://hdl.handle.net/10138/312131
Abstract: Increasing abundance of microplastics (MP) in marine and freshwaters is currently one of the greatest environmental concerns. Since plastics are fairly resistant to chemical decomposition, breakdown and reutilization of MP carbon complexes requires microbial activity. Currently, only a few microbial isolates have been shown to degrade MPs, and direct measurements of the fate of the MP carbon are still lacking. We used compound-specific isotope analysis to track the fate of fully labelled 13C-polyethylene (PE) MP carbon across the aquatic microbial-animal interface. Isotopic values of respired CO2 and membrane lipids showed that MP carbon was partly mineralized and partly used for cell growth. Microbial mineralization and assimilation of PE-MP carbon was most active when inoculated microbes were obtained from highly humic waters, which contain recalcitrant substrate sources. Mixotrophic algae (Cryptomonas sp.) and herbivorous zooplankton (Daphnia magna) used microbial mediated PE-MP carbon in their cell membrane fatty acids. Moreover, heteronanoflagellates and mixotrophic algae sequestered MP carbon for synthesizing essential ω-6 and ω-3 polyunsaturated fatty acids. Thus, this study demonstrates that aquatic micro-organisms can produce, biochemically upgrade, and trophically transfer nutritionally important biomolecules from PE-MP.
Subject: 1172 Environmental sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
s41598_019_55990_2.pdf 3.169Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record