Bayesian model based spatiotemporal survey designs and partially observed log Gaussian Cox process

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/312165

Lähdeviite

Liu , J & Vanhatalo , J 2020 , ' Bayesian model based spatiotemporal survey designs and partially observed log Gaussian Cox process ' , Spatial statistics , vol. 35 , 100392 . https://doi.org/10.1016/j.spasta.2019.100392

Julkaisun nimi: Bayesian model based spatiotemporal survey designs and partially observed log Gaussian Cox process
Tekijä: Liu, Jia; Vanhatalo, Jarno
Tekijän organisaatio: Research Centre for Ecological Change
Department of Mathematics and Statistics
Organismal and Evolutionary Biology Research Programme
Environmental and Ecological Statistics Group
Biostatistics Helsinki
Päiväys: 2020-03
Kieli: eng
Sivumäärä: 27
Kuuluu julkaisusarjaan: Spatial statistics
ISSN: 2211-6753
DOI-tunniste: https://doi.org/10.1016/j.spasta.2019.100392
URI: http://hdl.handle.net/10138/312165
Tiivistelmä: In geostatistics, the spatiotemporal design for data collection is central for accurate prediction and parameter inference. An important class of geostatistical models is log-Gaussian Cox process (LGCP) but there are no formal analyses on spatial or spatiotemporal survey designs for them. In this work, we study traditional balanced and uniform random designs in situations where analyst has prior information on intensity function of LGCP and show that the traditional balanced and random designs are not efficient in such situations. We also propose a new design sampling method, a rejection sampling design, which extends the traditional balanced and random designs by directing survey sites to locations that are a priori expected to provide most information. We compare our proposal to the traditional balanced and uniform random designs using the expected average predictive variance (APV) loss and the expected Kullback-Leibler (KL) divergence between the prior and the posterior for the LGCP intensity function in simulation experiments and in a real world case study. The APV informs about expected accuracy of a survey design in point-wise predictions and the KL-divergence measures the expected gain in information about the joint distribution of the intensity field. The case study concerns planning a survey design for analyzing larval areas of two commercially important fish stocks on Finnish coastal region. Our experiments show that the designs generated by the proposed rejection sampling method clearly outperform the traditional balanced and uniform random survey designs. Moreover, the method is easily applicable to other models in general. (C) 2019 The Author(s). Published by Elsevier B.V.
Avainsanat: 112 Statistics and probability
Experimental design
Bayesian inference
Kullback-Leibler information
Log Gaussian Cox process
Rejection sampling design
Species distribution
POINT PROCESS MODELS
PRESENCE-ONLY DATA
INFERENCE
INFORMATION
SPACE
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: cc_by_nc_nd
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: publishedVersion
Rahoittaja: SUOMEN AKATEMIA
SUOMEN AKATEMIA
Rahoitusnumero:


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
untitled.pdf 3.941MB PDF Avaa tiedosto
1_s2.0_S2211675319301435_main.pdf 1.624MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot