The Sharp Square Function Estimate with Matrix Weight

Show simple item record

dc.contributor.author Hytonen, Tuomas
dc.contributor.author Petermichl, Stefanie
dc.contributor.author Volberg, Alexander
dc.date.accessioned 2020-02-26T15:24:01Z
dc.date.available 2020-02-26T15:24:01Z
dc.date.issued 2019-03-28
dc.identifier.citation Hytonen , T , Petermichl , S & Volberg , A 2019 , ' The Sharp Square Function Estimate with Matrix Weight ' , Discrete Analysis . https://doi.org/10.19086/da.7597
dc.identifier.other PURE: 131602072
dc.identifier.other PURE UUID: c8298147-cd7d-4438-9e3e-109f8f836a56
dc.identifier.other WOS: 000463279600001
dc.identifier.uri http://hdl.handle.net/10138/312348
dc.description.abstract We prove the matrix A(2) conjecture for the dyadic square function, that is, an estimate of the form vertical bar vertical bar S-w vertical bar vertical bar(L2cd(w)-> Lr2) less than or similar to [W](A2), where the focus is on the sharp linear dependence on the matrix A(2) constant. Moreover, we give a mixed estimate in terms of A(2) and A(infinity) constants. The key to the proof is a sparse domination of a process inspired by the integrated form of the matrix-weighted square function. en
dc.format.extent 8
dc.language.iso eng
dc.relation.ispartof Discrete Analysis
dc.rights cc_by
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject HILBERT TRANSFORM
dc.subject INEQUALITY
dc.subject OPERATOR
dc.subject BOUNDS
dc.subject NORM
dc.subject 111 Mathematics
dc.title The Sharp Square Function Estimate with Matrix Weight en
dc.type Article
dc.contributor.organization Tuomas Hytönen / Principal Investigator
dc.contributor.organization Department of Mathematics and Statistics
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.19086/da.7597
dc.relation.issn 2397-3129
dc.rights.accesslevel openAccess
dc.type.version publishedVersion
dc.identifier.url https://arxiv.org/abs/1702.04569v2

Files in this item

Total number of downloads: Loading...

Files Size Format View
1702.04569v2.pdf 199.8Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record