Genetic variants in the 3' UTR of FLT1 are associated with preeclampsia phenotypes

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202002261407
Title: Genetic variants in the 3' UTR of FLT1 are associated with preeclampsia phenotypes
Author: Rahnasto, Johanna
Other contributor: Helsingin yliopisto, Bio- ja ympäristötieteellinen tiedekunta
University of Helsinki, Faculty of Biological and Environmental Sciences
Helsingfors universitet, Bio- och miljövetenskapliga fakulteten
Publisher: Helsingin yliopisto
Date: 2019
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202002261407
http://hdl.handle.net/10138/312360
Thesis level: master's thesis
Degree program: Genetiikan ja molekulaaristen biotieteiden maisteriohjelma
Master's Programme in Genetics and Molecular Biosciences
Magisterprogrammet i genetik och molekylära biovetenskaper
Specialisation: Genetiikan ja genomiikan opintosuunta
Genetics and Genomics
Genetik och genomik
Abstract: Preeclampsia is a vascular pregnancy disorder characterized by new-onset hypertension and proteinuria and/or new-onset preeclampsia associated symptoms during the second half of pregnancy. The pathophysiology of the disorder is not fully understood, but incomplete placentation and maternal tolerance towards fetal tissue are known to play a part in the disease pathogenesis. Predisposing factors include nulliparity, obesity, diabetes, chronic hypertension and autoimmune diseases. Furthermore, women who have experienced preeclampsia are more susceptible to cardiovascular disease later in life. One established biomarker for preeclampsia is the increased concentration of the soluble Fms-like tyrosine kinase 1 (sFlt1) in the maternal serum. sFlt1 is frequently overexpressed in preeclampsia and it is linked with angiogenic imbalance and endothelial dysfunction, although its role in the disorder is not completely clear. Preeclampsia has a genetic background. There are protective and predisposing variants in and near the Fms related tyrosine kinase 1 gene (FLT1; coding for sFlt1) that have been associated with preeclampsia either in the mother or in the fetus. In this study, five genetic polymorphisms over a 2.3 kb region in the 3’ untranslated region of FLT1 were genotyped by Sanger sequencing and fragment analysis in altogether 1200 individuals consisting of case and control mother–child pairs of the Finnish Genetics of Pre-eclampsia Consortium (FINNPEC) cohort. These polymorphisms were tested for association with various preeclampsia-related phenotypes by Fisher’s exact test. In the maternal genome, the minor alleles of rs17086497 and rs57760154 were associated with extreme hypertension (systolic blood pressure >180 mmHg) (p=0.004, OR=1.77) and obesity (p=0.023, OR=1.63). Homozygosity for these minor alleles was associated with pregnancy complications in general (p=0.026, OR=2.53) and the early-onset form of preeclampsia (p=0.004, OR=3.34). Additionally, the minor alleles of rs9554314, rs3138582 and rs149279513 were associated with extreme hypertension (p=0.045, OR=1.63) and obesity (p=0.023, OR=1.78). Moreover, a suggestive association to severe proteinuria (> 5 g/24h) was found in the maternal genome. In the fetal genome, significant negative associations were reached for rs17086497 and rs57760154 in terms of the serum concentration of sFlt1 in the preeclampsia group (p=0.008, OR=0.23). Overall, the results seem to link the studied region in the maternal genome to preeclampsia with severe features. This supports the idea of preeclampsia as a heterogeneous disorder with varying etiology and mechanisms and thus highlights the importance of differentiating between the various sub-phenotypes. For example, the association of the same allele in the fetal genome with lower maternal sFlt1 levels and in the maternal genome with severe symptoms of preeclampsia suggests that the sFlt1 level might not be a good measure in all patients. Additionally, the observed associations with extreme hypertension and obesity point to the possibility that this region might be relevant for the endothelial damage that is thought to be a central factor in creating the later-in-life disease susceptibility.
Subject: genetics
pregnancy
preeclampsia


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show full item record