Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/313152

Citation

Anderson , T C , Hytönen , T & Tapiola , O 2017 , ' Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type ' , Journal of Geometric Analysis , vol. 27 , no. 1 , pp. 95-119 . https://doi.org/10.1007/s12220-015-9675-6

Titel: Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type
Författare: Anderson, Theresa C.; Hytönen, Tuomas; Tapiola, Olli
Upphovmannens organisation: Department of Mathematics and Statistics
Datum: 2017
Språk: eng
Sidantal: 25
Tillhör serie: Journal of Geometric Analysis
ISSN: 1050-6926
DOI: https://doi.org/10.1007/s12220-015-9675-6
Permanenta länken (URI): http://hdl.handle.net/10138/313152
Abstrakt: In the Euclidean setting, the Fujii-Wilson-type A(infinity) weights satisfy a reverse Holder inequality (RHI), but in spaces of homogeneous type the best-known result has been that A(infinity) weights satisfy only a weak reverse Holder inequality. In this paper, we complement the results of Hytonen, Perez and Rela and show that there exist both A(infinity) weights that do not satisfy an RHI and a genuinely weaker weight class that still satisfies a weak RHI. We also show that all the weights that satisfy a weak RHI have a self-improving property, but the self-improving property of the strong reverse Holder weights fails in a general space of homogeneous type. We prove most of these purely non-dyadic results using convenient dyadic systems and techniques.
Subject: 111 Mathematics
Referentgranskad: Ja
Användningsbegränsning: openAccess
Parallelpublicerad version: acceptedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
1410.3608.pdf 540.1Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post