Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type

Show simple item record

dc.contributor.author Anderson, Theresa C.
dc.contributor.author Hytönen, Tuomas
dc.contributor.author Tapiola, Olli
dc.date.accessioned 2020-03-10T11:47:01Z
dc.date.available 2020-03-10T11:47:01Z
dc.date.issued 2017
dc.identifier.citation Anderson , T C , Hytönen , T & Tapiola , O 2017 , ' Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type ' , Journal of Geometric Analysis , vol. 27 , no. 1 , pp. 95-119 . https://doi.org/10.1007/s12220-015-9675-6
dc.identifier.other PURE: 58152990
dc.identifier.other PURE UUID: ab7578f4-038c-4651-9581-ca1d1f56cc75
dc.identifier.other Scopus: 84954188147
dc.identifier.other WOS: 000394261100005
dc.identifier.other ORCID: /0000-0002-0126-2235/work/31015759
dc.identifier.uri http://hdl.handle.net/10138/313152
dc.description.abstract In the Euclidean setting, the Fujii-Wilson-type A(infinity) weights satisfy a reverse Holder inequality (RHI), but in spaces of homogeneous type the best-known result has been that A(infinity) weights satisfy only a weak reverse Holder inequality. In this paper, we complement the results of Hytonen, Perez and Rela and show that there exist both A(infinity) weights that do not satisfy an RHI and a genuinely weaker weight class that still satisfies a weak RHI. We also show that all the weights that satisfy a weak RHI have a self-improving property, but the self-improving property of the strong reverse Holder weights fails in a general space of homogeneous type. We prove most of these purely non-dyadic results using convenient dyadic systems and techniques. en
dc.format.extent 25
dc.language.iso eng
dc.relation.ispartof Journal of Geometric Analysis
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject 111 Mathematics
dc.title Weak A_\infty weights and weak Reverse Hölder property in a space of homogeneous type en
dc.type Article
dc.contributor.organization Department of Mathematics and Statistics
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.1007/s12220-015-9675-6
dc.relation.issn 1050-6926
dc.rights.accesslevel openAccess
dc.type.version acceptedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
1410.3608.pdf 540.1Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record