Available and missing data to model impact of climate change on European forests

Show full item record



Permalink

http://hdl.handle.net/10138/313929

Citation

Ruiz-Benito , P , Vacchiano , G , Lines , E R , Reyer , C P O , Ratcliffe , S , Morin , X , Hartig , F , Mäkelä , A , Yousefpour , R , Chaves , J E , Palacios-Orueta , A , Benito-Garzón , M , Morales-Molino , C , Camarero , J J , Jump , A S , Kattge , J , Lehtonen , A , Ibrom , A , Owen , H J F & Zavala , M A 2020 , ' Available and missing data to model impact of climate change on European forests ' , Ecological Modelling , vol. 416 , 108870 . https://doi.org/10.1016/j.ecolmodel.2019.108870

Title: Available and missing data to model impact of climate change on European forests
Author: Ruiz-Benito, Paloma; Vacchiano, Giorgio; Lines, Emily R.; Reyer, Christopher P.O.; Ratcliffe, Sophia; Morin, Xavier; Hartig, Florian; Mäkelä, Annikki; Yousefpour, Rasoul; Chaves, Jimena E.; Palacios-Orueta, Alicia; Benito-Garzón, Marta; Morales-Molino, Cesar; Camarero, J. Julio; Jump, Alistair S.; Kattge, Jens; Lehtonen, Aleksi; Ibrom, Andreas; Owen, Harry J.F.; Zavala, Miguel A.
Contributor: University of Helsinki, Department of Forest Sciences
Date: 2020-01-15
Language: eng
Number of pages: 15
Belongs to series: Ecological Modelling
ISSN: 0304-3800
URI: http://hdl.handle.net/10138/313929
Abstract: Climate change is expected to cause major changes in forest ecosystems during the 21st century and beyond. To assess forest impacts from climate change, the existing empirical information must be structured, harmonised and assimilated into a form suitable to develop and test state-of-the-art forest and ecosystem models. The combination of empirical data collected at large spatial and long temporal scales with suitable modelling approaches is key to understand forest dynamics under climate change. To facilitate data and model integration, we identified major climate change impacts observed on European forest functioning and summarised the data available for monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases (including information from remote sensing, vegetation inventories, dendroecology, palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) and 50 databases of environmental drivers highlights a substantial degree of data availability and accessibility. However, some critical variables relevant to predicting European forest responses to climate change are only available at relatively short time frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, tree mortality and recruitment. Moreover, we identified data gaps or lack of data integration particularly in variables related to local adaptation and phenotypic plasticity, dispersal capabilities and physiological responses. Overall, we conclude that forest data availability across Europe is improving, but further efforts are needed to integrate, harmonise and interpret this data (i.e. making data useable for non-experts). Continuation of existing monitoring and networks schemes together with the establishments of new networks to address data gaps is crucial to rigorously predict climate change impacts on European forests.
Subject: 1181 Ecology, evolutionary biology
4112 Forestry
climatic extremes
data accessibility
data integration
drivers
forest responses to climate change
harmonisation
open access
BIOMASS ESTIMATION
PLANT-SPECIES RICHNESS
DRIVING TEMPERATURE
TERRESTRIAL ECOSYSTEMS
WAVE-FORM LIDAR
AIRBORNE LIDAR DATA
DISCRETE-RETURN
3D VEGETATION STRUCTURE
LAND-USE
LEAF-AREA INDEX
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S0304380019303783_main.pdf 1.340Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record