Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/314210

Lähdeviite

Akimov , Y , Bulanova , D , Timonen , S , Wennerberg , K & Aittokallio , T 2020 , ' Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics ' , Molecular Systems Biology , vol. 16 , no. 3 , 9195 . https://doi.org/10.15252/msb.20199195

Julkaisun nimi: Improved detection of differentially represented DNA barcodes for high-throughput clonal phenomics
Tekijä: Akimov, Yevhen; Bulanova, Daria; Timonen, Sanna; Wennerberg, Krister; Aittokallio, Tero
Tekijän organisaatio: Computational Systems Medicine
Institute for Molecular Medicine Finland
University of Helsinki
Helsinki Institute of Life Science HiLIFE
Immunobiology Research Program
Krister Wennerberg / Principal Investigator
Helsinki Institute for Information Technology
Bioinformatics
Päiväys: 2020-03-18
Kieli: eng
Sivumäärä: 18
Kuuluu julkaisusarjaan: Molecular Systems Biology
ISSN: 1744-4292
DOI-tunniste: https://doi.org/10.15252/msb.20199195
URI: http://hdl.handle.net/10138/314210
Tiivistelmä: Abstract Cellular DNA barcoding has become a popular approach to study heterogeneity of cell populations and to identify clones with differential response to cellular stimuli. However, there is a lack of reliable methods for statistical inference of differentially responding clones. Here, we used mixtures of DNA-barcoded cell pools to generate a realistic benchmark read count dataset for modelling a range of outcomes of clone-tracing experiments. By accounting for the statistical properties intrinsic to the DNA barcode read count data, we implemented an improved algorithm that results in a significantly lower false-positive rate, compared to current RNA-seq data analysis algorithms, especially when detecting differentially responding clones in experiments with strong selection pressure. Building on the reliable statistical methodology, we illustrate how multidimensional phenotypic profiling enables one to deconvolute phenotypically distinct clonal subpopulations within a cancer cell line. The mixture control dataset and our analysis results provide a foundation for benchmarking and improving algorithms for clone-tracing experiments.
Avainsanat: 1182 Biochemistry, cell and molecular biology
clone tracing
DNA barcoding
fate mapping
lineage tracing
phenomics
STEM-CELLS
EXPRESSION ANALYSIS
AUTOPHAGY
MODEL
FATE
HETEROGENEITY
DYNAMICS
REVEALS
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: cc_by
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: publishedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
msb.20199195.pdf 32.26MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot