Edge-Facilitated Mobile Computing and Communication

Show full item record



Permalink

http://urn.fi/URN:ISBN:978-951-51-6152-9
Title: Edge-Facilitated Mobile Computing and Communication
Author: Zhou, Pengyuan
Contributor: University of Helsinki, Faculty of Science
Doctoral Programme in Computer Science
Publisher: Helsingin yliopisto
Date: 2020-05-28
URI: http://urn.fi/URN:ISBN:978-951-51-6152-9
http://hdl.handle.net/10138/314751
Thesis level: Doctoral dissertation (monograph)
Abstract: The proliferation of IoT devices and rapidly developing wireless techniques boost the data volume and service demand at the edge of the Internet. Meanwhile, increased requirement for low latency feedback has become a must for most popular mobile applications, e.g., Augmented Reality (AR), Virtual Reality (VR) and Connected Vehicles. To address these challenges, edge computing has emerged as an extensional solution for cloud computing. This thesis studies edge computing-facilitated mobile computing and communication systems. We first propose solutions to improve edge resource utilization regarding general edge systems. We present a mechanism to cluster user requests based on similarity for better Content Delivery Net- work (CDN) performance. This mechanism works directly on current CDN architecture and can be deployed incrementally. Then we extend the mechanism by adding cache resource grouping algorithm, so that the system directs similar requests to same servers and group those servers which receive similar requests. This iterative mechanism optimizes the edge utilization by concentrating the resource on similar requests to achieve higher cache hit ratio and computation efficiency. Thereafter, we present solutions for mobile edge systems specifically for three most promising use cases, i.e., Connected Vehicles, Mobile AR (MAR) and Smart city (traffic control). We explore the potential of edge computing in connected vehicular AR applications with real data sets. We design a lightweight edge system and data flow fit for general connected vehicular AR applications and implement a prototype. With an indoor test and real data set analysis, we find out that our system can improve the performance of vehicular AR applications with reasonable cost. To optimize the system, we formulate the problem of edge server allocation and task scheduling as a mutant multiprocessor scheduling problem and develop a two-stage edge-cloud decentralized algorithm as well as a centralized algorithm to schedule the offloading tasks on the fly. We conduct a raw road test and an extensive evaluation based on the road test results and large data sets from real world. The results show that our system improve at least twice the application performance comparing with cloud solutions. For MAR, we consider to offload tasks to multiple edge servers via multiple paths simultaneously to further improve the MAR performance. We develop a fast scheduling algorithm to split the workloads among the avail- able edge servers and show promising results with real implementations. At last, we explore the potential of combining edge computing and ma- chine learning techniques to realize intelligent traffic control by letting edge servers co-located with traffic lights learn the waiting traffic and adapt the light periods with reinforcement learning.Esineiden Internetin leviäminen ja nopeasti kehittyvät langattomat tekniikat lisäävät datan määrää ja palvelutarvetta Internetin reunalla. Samanaikaisesti lisääntyneestä alhaisen viiveen palautteen vaatimuksesta on tullut välttämätön suosituimpiin mobiilisovelluksiin, esim. lisättyyn todellisuuteen (AR), virtuaalitodellisuuteen (VR) ja yhdistettyihin ajoneuvoihin. Reunalaskenta on noussut pilvilaskennan rinnalle näihin haasteisiin vastaavaksi ratkaisuksi. Tässä väitöskirjassa tutkitaan laskennallisesti laajennettuja mobiililaskenta- ja viestintäjärjestelmiä. Ehdotamme ensin ratkaisuja reunaresurssien käytön parantamiseksi yleisten reunajärjestelmien suhteen. Esitämme mekanismin käyttäjien pyyntöjen klusterointiin perustuen samankaltaisuuteen sisällönjakeluverkon (CDN) suorituskyvyn parantamiseksi. Tämä mekanismi toimii suoraan nykyisessä CDN-arkkitehtuureissa ja voidaan ottaa käyttöön asteittain. Sitten laajennamme mekanismia lisäämällä välimuistiresurssien ryhmittelyalgoritmin siten, että järjestelmä ohjaa samankaltaiset pyynnöt samoille palvelimille ja ryhmittelee palvelimet pyyntöjen mukaan. Tämä iteratiivinen mekanismi optimoi reunakäytön keskittämällä resurssit samanlaisiin pyyntöihin suuremman välimuistin osumissuhteen ja laskentatehokkuuden saavuttamiseksi. Sen jälkeen esittelemme ratkaisuja liikkuviin reunajärjestelmiin erityisesti kolmeen lupaavimpaan käyttötapaukseen, ts. yhdistetyt ajoneuvot, laajennettu mobiilitodellisuus (MAR) ja älykäs kaupunki (erityisesti liikenteenohjaus). Tutkimme reunalaskennan mahdollisuuksia yhdistettyjen ajoneuvojen AR-sovelluksissa. Suunnittelemme kevyen reunajärjestelmän ja tiedonkulun, joka sopii yleisesti yhdistettyjen ajoneuvojen AR-sovelluksiin ja toteutamme prototyypin. Sisätilojen testin ja reaalimaailman datan avulla saamme selville, että järjestelmämme voi parantaa ajoneuvojen AR-sovellusten suorituskykyä kohtuullisin kustannuksin. Järjestelmän optimoimiseksi formuloimme reunapalvelimien allokoinnin ja tehtävien ajoituksen ongelman muuttuvana moniprosessorien skedulointiongelmana ja kehitämme kaksivaiheisen reunapilviin soveltuvan hajautetun algoritmin sekä keskitetyn algoritmin kuormansiirtotehtävien ajonaikaiseen ajoittamiseen. Suoritamme kokeellisen testin oikeassa ajossa ja datapohjaisen arvioinnin, joka perustuu tietestien tuloksiin ja todellisen maailman suuriin tietojoukkoihin. Tulokset osoittavat, että järjestelmämme parantaa merkittävästi sovelluksen suorituskykyä verrattuna pilviratkaisuihin. MAR:n osalta käsittelemme tehtävien lataamista useille reunapalvelimille useiden reittien kautta samanaikaisesti MAR:n suorituskyvyn parantamiseksi. Kehitämme nopean aikataulutusalgoritmin työkuormien jakamiseen käytettävissä olevien reunapalvelimien. Lopuksi tutkimme mahdollisuuksia yhdistää reunalaskenta ja koneoppimistekniikat älykkään liikennevalo-ohjauksen toteuttamiseksi liikennevaloihin sijoitetuilla reunapalvelimilla.
Subject:
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
Edge-Fac.pdf 8.908Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record