Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome

Show full item record



Permalink

http://hdl.handle.net/10138/314773

Citation

Putkonen , N , Laiho , A , Ethell , D , Pursiheimo , J , Anttonen , A-K , Pitkonen , J , Gentile , A M , de Diego-Otero , Y & Castren , M L 2020 , ' Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome ' , Cells , vol. 9 , no. 2 , 289 . https://doi.org/10.3390/cells9020289

Title: Urine microRNA Profiling Displays miR-125a Dysregulation in Children with Fragile X Syndrome
Author: Putkonen, Noora; Laiho, Asta; Ethell, Doug; Pursiheimo, Juha; Anttonen, Anna-Kaisa; Pitkonen, Juho; Gentile, Adriana M.; de Diego-Otero, Yolanda; Castren, Maija L.
Other contributor: University of Helsinki, Medicum
University of Helsinki, Medicum
University of Helsinki, Department of Physiology
University of Helsinki, Department of Physiology







Date: 2020-02
Language: eng
Number of pages: 14
Belongs to series: Cells
ISSN: 2073-4409
DOI: https://doi.org/10.3390/cells9020289
URI: http://hdl.handle.net/10138/314773
Abstract: A triplet repeat expansion leading to transcriptional silencing of the FMR1 gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele. The largest increase was found in miR-125a in the FXS sample, and the miR-125a levels were increased in two independent sets of urine samples from a total of 19 FXS children. Urine miR-125a levels appeared to increase with age in control subjects, but varied widely in FXS subjects. Should the results be generalized, it could suggest that two FXS subgroups existed. Predicted gene targets of the differentially regulated miRNAs are involved in molecular pathways that regulate developmental processes, homeostasis, and neuronal function. Regulation of miR-125a has been associated with type I metabotropic glutamate receptor signaling (mGluR), which has been explored as a treatment target for FXS, reinforcing the possibility that urine miR-125a may provide a novel biomarker for FXS.
Subject: disease biomarker
urine miRNA
fragile X syndrome
autism
miR-125a
CIRCULATING MICRORNAS
GENE
EXPRESSION
MECHANISM
GENOMICS
MIRNA
RNAS
1184 Genetics, developmental biology, physiology
3111 Biomedicine
1182 Biochemistry, cell and molecular biology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
cells_09_00289_v2.pdf 1.470Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record