Real numbers and projective spaces : Intuitionistic reasoning with undecidable basic relations

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/317010

Citation

von Plato , J 2018 , ' Real numbers and projective spaces : Intuitionistic reasoning with undecidable basic relations ' , Indagationes Mathematicae , vol. 29 , no. 6 , pp. 1546-1554 . https://doi.org/10.1016/j.indag.2017.10.012

Titel: Real numbers and projective spaces : Intuitionistic reasoning with undecidable basic relations
Författare: von Plato, Jan
Medarbetare: University of Helsinki, Gödeliana
Datum: 2018-12
Språk: eng
Sidantal: 9
Tillhör serie: Indagationes Mathematicae
ISSN: 0019-3577
Permanenta länken (URI): http://hdl.handle.net/10138/317010
Abstrakt: Brouwer introduced in 1924 the notion of an apartness relation for real numbers, with the idea that whenever it holds, a finite computation verifies it in contrast to equality. The idea was followed in Heyting's axiomatization of intuitionistic projective geometry. Brouwer in turn worked out an intuitionistic theory of "virtual order." It is shown that Brouwer's proof of the equivalence of virtual and maximal order goes only in one direction, and that Heyting's axiomatization needs to be made a bit stronger. (C) 2018 Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
Subject: 111 Mathematics
geometry
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
1_s2.0_S0019357718303252_main.pdf 275.0Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post