A computational framework for revealing competitive travel times with low-carbon modes based on smartphone data collection

Show full item record



Permalink

http://hdl.handle.net/10138/317160

Citation

Bagheri , M , Mladenovic , M , Kosonen , I , Nurminen , J K , Roncoli , C & Ylä-Jääski , A 2020 , ' A computational framework for revealing competitive travel times with low-carbon modes based on smartphone data collection ' , Journal of Advanced Transportation , vol. 2020 , 4693750 . https://doi.org/10.1155/2020/4693750

Title: A computational framework for revealing competitive travel times with low-carbon modes based on smartphone data collection
Author: Bagheri, Mehrdad; Mladenovic, Milos; Kosonen, Iisakki; Nurminen, Jukka K; Roncoli, Claudio; Ylä-Jääski, Antti
Contributor: University of Helsinki, Department of Computer Science
Date: 2020-03-21
Language: eng
Number of pages: 20
Belongs to series: Journal of Advanced Transportation
ISSN: 0197-6729
URI: http://hdl.handle.net/10138/317160
Abstract: Evaluating potential of shifting to low-carbon transport modes requires considering limited travel-time budget of travelers. Despite previous studies focusing on time-relevant modal shift, there is a lack of integrated and transferable computational frameworks, which would use emerging smartphone-based high-resolution longitudinal travel datasets. This research explains and illustrates a computational framework for this purpose. The proposed framework compares observed trips with computed alternative trips and estimates the extent to which alternatives could reduce carbon emission without a significant increase in travel time.. The framework estimates potential of substituting observed car and public-transport trips with lower-carbon modes, evaluating parameters per individual traveler as well as for the whole city, from a set of temporal and spatial viewpoints. The illustrated parameters include the size and distribution of modal shifts, emission savings, and increased active-travel growth, as clustered by target mode, departure time, trip distance, and spatial coverage throughout the city. Parameters are also evaluated based on the frequently repeated trips. We evaluate usefulness of the method by analyzing door-to-door trips of a few hundred travelers, collected from smartphone traces in the Helsinki metropolitan area, Finland, during several months. The experiment's preliminary results show that, for instance, on average, 20% of frequent car trips of each traveler have a low-carbon alternative, and if the preferred alternatives are chosen, about 8% of the carbon emissions could be saved. In addition, it is seen that the spatial potential of bike as an alternative is much more sporadic throughout the city compared to that of bus, which has relatively more trips from/to city center. With few changes, the method would be applicable to other cities, bringing possibly different quantitative results. In particular, having more thorough data from large number of participants could provide implications for transportation researchers and planners to identify groups or areas for promoting mode shift. Finally, we discuss the limitations and lessons learned, highlighting future research directions.
Subject: 213 Electronic, automation and communications engineering, electronics
113 Computer and information sciences
PUBLIC TRANSPORT
BEHAVIOR
PERSPECTIVES
INFORMATION
SERVICES
BICYCLE
SYSTEM
TRIPS
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
4693750.pdf 3.451Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record