dc.contributor.author |
Katinskaia, Anisia |
|
dc.contributor.author |
Ivanova, Sardana |
|
dc.contributor.author |
Yangarber, Roman |
|
dc.contributor.editor |
Erjavec, Tomaž |
|
dc.contributor.editor |
Marcińczuk, Michał |
|
dc.contributor.editor |
Nakov, Preslav |
|
dc.contributor.editor |
Piskorski, Jakub |
|
dc.contributor.editor |
Pivovarova, Lidia |
|
dc.contributor.editor |
Šnajder, Jan |
|
dc.contributor.editor |
Steinberger, Josef |
|
dc.contributor.editor |
Yangarber, Roman |
|
dc.date.accessioned |
2020-07-03T23:17:19Z |
|
dc.date.available |
2020-07-03T23:17:19Z |
|
dc.date.issued |
2019-08 |
|
dc.identifier.citation |
Katinskaia , A , Ivanova , S & Yangarber , R 2019 , Multiple Admissibility in Language Learning: Judging Grammaticality using Unlabeled Data . in T Erjavec , M Marcińczuk , P Nakov , J Piskorski , L Pivovarova , J Šnajder , J Steinberger & R Yangarber (eds) , The 7th Workshop on Balto-Slavic Natural Language Processing : Proceedings of the Workshop . The Association for Computational Linguistics , Stroudsburg , pp. 12-22 , Workshop on Balto-Slavic Natural Language Processing , Florence , Italy , 02/08/2019 . https://doi.org/10.18653/v1/W19-3702 |
|
dc.identifier.citation |
conference |
|
dc.identifier.other |
PURE: 126210798 |
|
dc.identifier.other |
PURE UUID: e390c6a2-5b5a-4a69-a5aa-678c2f9a0337 |
|
dc.identifier.other |
ORCID: /0000-0001-5264-9870/work/68618678 |
|
dc.identifier.other |
WOS: 000538519300002 |
|
dc.identifier.uri |
http://hdl.handle.net/10138/317348 |
|
dc.description.abstract |
We present our work on the problem of detection Multiple Admissibility (MA) in language learning. Multiple Admissibility occurs when more than one grammatical form of a word fits syntactically and semantically in a given context. In second-language education—in particular, in intelligent tutoring systems/computer-aided language learning (ITS/CALL), systems generate exercises automatically. MA implies that multiple alternative answers are possible. We treat the problem as a grammaticality judgement task. We train a neural network with an objective to label sentences as grammatical or ungrammatical, using a "simulated learner corpus": a dataset with correct text and with artificial errors, generated automatically. While MA occurs commonly in many languages, this paper focuses on learning Russian. We present a detailed classification of the types of constructions in Russian, in which MA is possible, and evaluate the model using a test set built from answers provided by users of the Revita language learning system. |
en |
dc.format.extent |
11 |
|
dc.language.iso |
eng |
|
dc.publisher |
The Association for Computational Linguistics |
|
dc.relation.ispartof |
The 7th Workshop on Balto-Slavic Natural Language Processing |
|
dc.relation.isversionof |
978-1-950737-41-3 |
|
dc.rights |
cc_by |
|
dc.rights.uri |
info:eu-repo/semantics/openAccess |
|
dc.subject |
113 Computer and information sciences |
|
dc.title |
Multiple Admissibility in Language Learning: : Judging Grammaticality using Unlabeled Data |
en |
dc.type |
Conference contribution |
|
dc.contributor.organization |
Department of Languages |
|
dc.contributor.organization |
Department of Computer Science |
|
dc.contributor.organization |
Department of Digital Humanities |
|
dc.description.reviewstatus |
Peer reviewed |
|
dc.relation.doi |
https://doi.org/10.18653/v1/W19-3702 |
|
dc.rights.accesslevel |
openAccess |
|
dc.type.version |
publishedVersion |
|