Comparing MEG and EEG in detecting the ∼20-Hz rhythm modulation to tactile and proprioceptive stimulation

Show full item record



Permalink

http://hdl.handle.net/10138/317749

Citation

Illman , M , Laaksonen , K , Liljeström , M , Jousmäki , V , Piitulainen , H & Forss , N 2020 , ' Comparing MEG and EEG in detecting the ∼20-Hz rhythm modulation to tactile and proprioceptive stimulation ' , NeuroImage , vol. 215 , 116804 . https://doi.org/10.1016/j.neuroimage.2020.116804

Title: Comparing MEG and EEG in detecting the ∼20-Hz rhythm modulation to tactile and proprioceptive stimulation
Author: Illman, Mia; Laaksonen, Kristina; Liljeström, Mia; Jousmäki, Veikko; Piitulainen, Harri; Forss, Nina
Contributor organization: HUS Neurocenter
Neurologian yksikkö
Helsinki University Hospital Area
University of Helsinki
Clinicum
Department of Neurosciences
HUS Medical Imaging Center
Date: 2020-07-15
Language: eng
Number of pages: 10
Belongs to series: NeuroImage
ISSN: 1053-8119
DOI: https://doi.org/10.1016/j.neuroimage.2020.116804
URI: http://hdl.handle.net/10138/317749
Abstract: Modulation of the ∼20-Hz brain rhythm has been used to evaluate the functional state of the sensorimotor cortex both in healthy subjects and patients, such as stroke patients. The ∼20-Hz brain rhythm can be detected by both magnetoencephalography (MEG) and electroencephalography (EEG), but the comparability of these methods has not been evaluated. Here, we compare these two methods in the evaluating of ∼20-Hz activity modulation to somatosensory stimuli. Rhythmic ∼20-Hz activity during separate tactile and proprioceptive stimulation of the right and left index finger was recorded simultaneously with MEG and EEG in twenty-four healthy participants. Both tactile and proprioceptive stimulus produced a clear suppression at 300–350 ms followed by a subsequent rebound at 700–900 ms after stimulus onset, detected at similar latencies both with MEG and EEG. The relative amplitudes of suppression and rebound correlated strongly between MEG and EEG recordings. However, the relative strength of suppression and rebound in the contralateral hemisphere (with respect to the stimulated hand) was significantly stronger in MEG than in EEG recordings. Our results indicate that MEG recordings produced signals with higher signal-to-noise ratio than EEG, favoring MEG as an optimal tool for studies evaluating sensorimotor cortical functions. However, the strong correlation between MEG and EEG results encourages the use of EEG when translating studies to clinical practice. The clear advantage of EEG is the availability of the method in hospitals and bed-side measurements at the acute phase.
Subject: 3112 Neurosciences
Beta rebound
Beta rhythm
Beta suppression
Passive movement
Sensorimotor cortex
Tactile stimulation
CORTICAL RHYTHMS
SENSITIVITY
PRIMARY MOTOR CORTEX
HZ
EXCITABILITY
FINGER
MOVEMENT BETA-SYNCHRONIZATION
OSCILLATIONS
EVENT-RELATED SYNCHRONIZATION
DESYNCHRONIZATION
Peer reviewed: Yes
Rights: cc_by_nc_nd
Usage restriction: openAccess
Self-archived version: acceptedVersion


Files in this item

Total number of downloads: Loading...

Files Size Format View
1_s2.0_S1053811920302913_main.pdf 3.975Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record