Henkivakuutussopimuksen tappio ja Hattendorffin lause

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202008173801
Title: Henkivakuutussopimuksen tappio ja Hattendorffin lause
Author: Hanninen, Elsa
Contributor: University of Helsinki, Faculty of Science
Publisher: Helsingin yliopisto
Date: 2020
Language: fin
URI: http://urn.fi/URN:NBN:fi:hulib-202008173801
http://hdl.handle.net/10138/318348
Thesis level: master's thesis
Degree program: Matematiikan ja tilastotieteen maisteriohjelma
Master's Programme in Mathematics and Statistics
Magisterprogrammet i matematik och statistik
Specialisation: Sovellettu matematiikka
Applied Mathematics
Tillämpad matematik
Discipline: none
Abstract: Vakuutussopimusten tappion arvioiminen on tärkeää vakuutusyhtiön riskienhallinnan kannalta. Tässä työssä esitellään Hattendorffin lause vakuutussopimuksen tappion odotusarvon ja varianssin arvioimiseksi sekä sovelletaan sen tuloksia monitilaisella Markov-prosessilla mallinnettavalle henkivakuutussopimukselle. Hattendorffin lauseen nojalla ekvivalenssiperiaatteen mukaan hinnoitellun vakuutussopimuksen erillisillä aikaväleillä syntyneiden tappioiden odotusarvo on nolla, ja tappiot ovat korreloimattomia, jonka seurauksena tappion varianssi voidaan laskea erillisillä aikaväleillä muodostuneiden tappioiden varianssien summana. Työn soveltavana osana simuloidaan Markov-prosesseja sopivassa monitilaisessa mallissa mallintamaan henkivakuutussopimuksien realisaatioita. Tutkitaan, onko simuloitujen polkujen tuottamien vuosittaisten tappioiden keskiarvo lähellä nollaa, ja onko koko sopimusajan tappioiden varianssin arvo lähellä summaa vuosittaisten tappioiden variansseista. Lisäksi lasketaan simulaation asetelmalle Hattendorffin lauseen avulla teoreettiset vastineet ja verrataan näitä simuloituihin arvoihin. Vakuutussopimus pitää karkeasti sisällään kahdenlaisia maksuja: vakuutusyhtiön maksamat korvausmaksut ja vakuutetun maksamat vakuutusmaksut. Vakuutussopimuksen kassavirta on jollain aikavälillä tapahtuvien vakuutuskorvausten ja -maksujen erotuksen hetkeen nolla diskontattu arvo. Vastuuvelka on määrittelyhetken jälkeen syntyvän, määrittelyhetkeen diskontatun, kassavirran odotusarvo. Vakuutussopimuksen tappio jollain aikavälillä määritellään kyseisen aikavälin kassavirran ja vastuuvelan arvonmuutoksen summana. Kun määritellään stokastinen prosessi, joka laskee tietyllä hetkellä siihen mennessä kumuloituneet kustannukset sekä tulevan vastuuvelan nykyarvon, voidaan tappio ilmaista tämän prosessin arvonmuutoksena. Kyseinen prosessi on neliöintegroituva martingaali, jolloin Hattendorffin lauseen tulokset ovat seurausta neliöintegroituvien martingaalien arvonmuutoksen ominaisuuksista. Hattendorffin lauseen tulokset löydettiin jo 1860-luvulla, mutta martingaaliteorian hyödyntäminen on moderni lähestymistapa ongelmaan. Esittämällä monitilaisella Markov-prosessilla mallinnettavan sopimuksen kustannukset Lebesgue-Stieltjes integraalina, saadaan tappion varianssille laskukelpoiset muodot. Markov-prosessilla mallinnettavilla sopimuksille voidaan johtaa erityistapaus Hattendorffin tuloksesta, missä tappiot voidaan allokoida eri vuosien lisäksi eri tiloihin liittyviksi tappioiksi. Soveltavassa osiossa nähdään, että yksittäisinä sopimusvuosina syntyneiden tappioiden odotusarvot ovat lähellä nollaa, ja otosvarianssien summa lähestyy koko sopimusajan tappion otosvarianssia, mikä on yhtäpitävää Hattendorffin lauseen väitteiden kanssa. Simuloidut otosvarianssit eivät täysin vastaa teoreettisia vastineitaan.
Subject: henkivakuutus
Hattendorffin lause
tappio
Markovin prosessi
martingaali


Files in this item

Total number of downloads: Loading...

Files Size Format View
Hanninen_Elsa_ProGradu_2020.pdf 657.3Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record