Finding Periodic Apartments : A Computational Study of Hyperbolic Buildings

Show simple item record

dc.contributor Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta fi
dc.contributor University of Helsinki, Faculty of Science en
dc.contributor Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten sv
dc.contributor.author Savela, Jarkko
dc.date.issued 2020
dc.identifier.uri URN:NBN:fi:hulib-202008173796
dc.identifier.uri http://hdl.handle.net/10138/318354
dc.description.abstract This thesis presents a computational study of a fundamental open conjecture in geometric group theory using an intricate combination of Boolean Satisfiability and orderly generation. In particular, we focus on Gromov’s subgroup conjecture (GSC), which states that “each one-ended hyperbolic group contains a subgroup isomorphic to the fundamental group of a closed surface of genus at least 2”. Several classes of groups have been shown to satisfy GSC, but the status of non-right-angled groups with regard to GSC is presently unknown, and may provide counterexamples to the conjecture. With this in mind Kangaslampi and Vdovina constructed 23 such groups utilizing the theory of hyperbolic buildings [International Journal of Algebra and Computation, vol. 20, no. 4, pp. 591–603, 2010], and ran an exhaustive computational analysis of surface subgroups of genus 2 arising from so-called periodic apartments [Experimental Mathematics, vol. 26, no. 1, pp. 54–61, 2017]. While they were able to rule out 5 of the 23 groups as potential counterexamples to GSC, they reported that their computational approach does not scale to genera higher than 2. We extend the work of Kangaslampi and Vdovina by developing two new approaches to analyzing the subgroups arising from periodic apartments in the 23 groups utilizing different combinations of SAT solving and orderly generation. We develop novel SAT encodings and a specialized orderly algorithm for the approaches, and perform an exhaustive analysis (over the 23 groups) of the genus 3 subgroups arising from periodic apartments. With the aid of massively parallel computation we also exhaust the case of genus 4. As a result we rule out 4 additional groups as counterexamples to GSC leaving 14 of the 23 groups for further inspection. In addition to this our approach provides an independent verification of the genus 2 results reported by Kangaslampi and Vdovina. en
dc.language.iso eng
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.subject sat
dc.subject combinatorial generation
dc.subject orderly algorithm
dc.subject boolean satisfiability
dc.subject hyperbolic buildings
dc.subject geometric group theory
dc.title Finding Periodic Apartments : A Computational Study of Hyperbolic Buildings en
dc.type.ontasot pro gradu -tutkielmat fi
dc.type.ontasot master's thesis en
dc.type.ontasot pro gradu-avhandlingar sv
dc.subject.discipline Matematiikka und
dct.identifier.urn URN:NBN:fi:hulib-202008173796

Files in this item

Total number of downloads: Loading...

Files Size Format View
savela_jarkko_tutkielma_2020.pdf 1.255Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record