Empirical approach to satellite snow detection

Show full item record



Permalink

http://hdl.handle.net/10138/319212
Title: Empirical approach to satellite snow detection
Author: Siljamo, Niilo
Date: 2020-09
Belongs to series: Finnish Meteorological Institute Contributions 171
ISBN: 978-952-336-120-1
ISSN: 0782-6117
URI: http://hdl.handle.net/10138/319212
Abstract: Snow cover plays a significant role in the weather and climate system, ecosystems and many human activities, such as traffic. Weather station snow observations (snow depth and state of the ground) do not provide highresolution continental or global snow coverage data. The satellite observations complement in situ observations from weather stations. Geostationary weather satellites provide observations at high temporal resolution, but the spatial resolution is low, especially in polar regions. Polarorbiting weather satellites provide better spatial resolution in polar regions with limited temporal resolution. The best detection resolution is provided by optical and infra-red radiometers onboard weather satellites. Snow cover in itself is highly variable. Also, the variability of the surface properties (such as vegetation, water bodies, topography) and changing light conditions make satellite snow detection challenging. Much of this variability is in subpixel scales, and this uncertainty creates additional challenges for the development of snow detection methods. Thus, an empirical approach may be the most practical option when developing algorithms for automatic snow detection. In this work, which is a part of the EUMETSAT-funded H SAF project, two new empirically developed snow extent products for the EUMETSAT weather satellites are presented. The geostationary MSG/SEVIRI H32 snow product has been in operational production since 2008. The polar product Metop/AVHRR H32 is available since 2015. In addition, validation results based on weather station snow observations between 2015 and 2019 are presented. The results show that both products achieve the requirements set by the H SAF. *** Lumipeitteellä on huomattava vaikutus säähän, ilmastoon, luontoon ja yhteiskuntaan. Pelkästään sääasemilla tehtävät lumihavainnot (lumen syvyys ja maanpinnan laatu) eivät anna kattavaa kuvaa lumen peittävyydestä tai muista lumipeitteen ominaisuuksista. Sääasemien tuottamia havaintoja voidaan täydentää satelliiteista tehtävillä havainnoilla. Geostationaariset sääsatelliitit tuottavat havaintoja tihein välein, mutta havaintoresoluutio on heikko monilla alueilla, joilla esiintyy kausittaista lunta. Polaariradoilla sääsatelliittien havaintoresoluutio on napa-alueiden läheisyydessä huomattavasti parempi, mutta silloinkaan satelliitit eivät tuota jatkuvaa havaintopeittoa. Tiheimmän havaintoresoluution tuottavat sääsatelliittiradiometrit, jotka toimivat optisilla aallonpituuksilla (näkyvä valo ja infrapuna). Lumipeitteen kaukokartoitusta satelliiteista vaikeuttavat lumipeitteen oman vaihtelun lisäksi pinnan ominaisuuksien vaihtelu (kasvillisuus, vesistöt, topografia) ja valaistusolojen vaihtelu. Epävarma ja osittain puutteellinen tieto pinnan ja kasvipeitteen ominaisuuksista vaikeuttaa luotettavan automaattisen analyyttisen lumentunnistusmenetelmän kehittämistä ja siksi empiirinen lähestymistapa saattaa olla toimivin vaihtoehto automaattista lumentunnistusmenetelmää kehitettäessä. Tässä työssä esitellään kaksi EUMETSATin osittain rahoittamassa H SAFissa kehitettyä lumituotetta ja niissä käytetyt empiiristä lähestymistapaa soveltaen kehitetyt algoritmit. Geostationaarinen MSG/SEVIRI H31 lumituote on saatavilla vuodesta 2008 alkaen ja polaarituote Metop/AVHRR H32 vuodesta 2015 alkaen. Lisäksi esitellään pintahavaintoihin perustuvat validointitulokset, jotka osoittavat tuotteiden saavuttavan määritellyt tavoitteet.
Subject: snow
snow recognition
remote sensing


Files in this item

Total number of downloads: Loading...

Files Size Format View
Thesis_Niilo_Siljamo.pdf 8.228Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record