Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTPσ

Show full item record



Permalink

http://hdl.handle.net/10138/321014

Citation

Karki , S , Shkumatov , A V , Bae , S , Kim , H , Ko , J & Kajander , T 2020 , ' Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTPσ ' , Scientific Reports , vol. 10 , no. 1 , 11557 . https://doi.org/10.1038/s41598-020-68502-4

Title: Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTPσ
Author: Karki, Sudeep; Shkumatov, Alexander V.; Bae, Sungwon; Kim, Hyeonho; Ko, Jaewon; Kajander, Tommi
Contributor: University of Helsinki, Institute of Biotechnology
University of Helsinki, University Management
Date: 2020-07-14
Language: eng
Number of pages: 13
Belongs to series: Scientific Reports
ISSN: 2045-2322
URI: http://hdl.handle.net/10138/321014
Abstract: Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase sigma (PTP sigma). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTP sigma using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTP sigma complex to exert synaptogenic activity.
Subject: 1182 Biochemistry, cell and molecular biology
LAR-RPTPS
TRANSMEMBRANE PROTEINS
FAMILY
REFINEMENT
MOLECULES
INTERACTS
QUALITY
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
s41598_020_68502_4.pdf 5.949Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record