OpSeF : Open Source Python Framework for Collaborative Instance Segmentation of Bioimages

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://hdl.handle.net/10138/321197

Lähdeviite

Rasse , T M , Hollandi , R & Horvath , P 2020 , ' OpSeF : Open Source Python Framework for Collaborative Instance Segmentation of Bioimages ' , Frontiers in Bioengineering and Biotechnology , vol. 8 , 558880 . https://doi.org/10.3389/fbioe.2020.558880

Julkaisun nimi: OpSeF : Open Source Python Framework for Collaborative Instance Segmentation of Bioimages
Tekijä: Rasse, Tobias M.; Hollandi, Reka; Horvath, Peter
Tekijän organisaatio: Institute for Molecular Medicine Finland
University of Helsinki
Päiväys: 2020-10-06
Kieli: eng
Sivumäärä: 15
Kuuluu julkaisusarjaan: Frontiers in Bioengineering and Biotechnology
ISSN: 2296-4185
DOI-tunniste: https://doi.org/10.3389/fbioe.2020.558880
URI: http://hdl.handle.net/10138/321197
Tiivistelmä: Various pre-trained deep learning models for the segmentation of bioimages have been made available as developer-to-end-user solutions. They are optimized for ease of use and usually require neither knowledge of machine learning nor coding skills. However, individually testing these tools is tedious and success is uncertain. Here, we present the Open Segmentation Framework (OpSeF), a Python framework for deep learning-based instance segmentation. OpSeF aims at facilitating the collaboration of biomedical users with experienced image analysts. It builds on the analysts' knowledge in Python, machine learning, and workflow design to solve complex analysis tasks at any scale in a reproducible, well-documented way. OpSeF defines standard inputs and outputs, thereby facilitating modular workflow design and interoperability with other software. Users play an important role in problem definition, quality control, and manual refinement of results. OpSeF semi-automates preprocessing, convolutional neural network (CNN)-based segmentation in 2D or 3D, and postprocessing. It facilitates benchmarking of multiple models in parallel. OpSeF streamlines the optimization of parameters for pre- and postprocessing such, that an available model may frequently be used without retraining. Even if sufficiently good results are not achievable with this approach, intermediate results can inform the analysts in the selection of the most promising CNN-architecture in which the biomedical user might invest the effort of manually labeling training data. We provide Jupyter notebooks that document sample workflows based on various image collections. Analysts may find these notebooks useful to illustrate common segmentation challenges, as they prepare the advanced user for gradually taking over some of their tasks and completing their projects independently. The notebooks may also be used to explore the analysis options available within OpSeF in an interactive way and to document and share final workflows. Currently, three mechanistically distinct CNN-based segmentation methods, the U-Net implementation used in Cellprofiler 3.0, StarDist, and Cellpose have been integrated within OpSeF. The addition of new networks requires little; the addition of new models requires no coding skills. Thus, OpSeF might soon become both an interactive model repository, in which pre-trained models might be shared, evaluated, and reused with ease.
Avainsanat: deep learning
biomedical image analysis
segmentation
convolutional neural network
U-net
cellpose
StarDist
python
NUCLEUS SEGMENTATION
IMAGE
MICROSCOPY
PLATFORM
1182 Biochemistry, cell and molecular biology
113 Computer and information sciences
Vertaisarvioitu: Kyllä
Tekijänoikeustiedot: cc_by
Pääsyrajoitteet: openAccess
Rinnakkaistallennettu versio: publishedVersion


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
fbioe_08_558880.pdf 5.350MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot