Strong Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid Dimers : Implications for Condensation Thermodynamics
Show simple item record
dc.contributor.author |
Elm, Jonas |
|
dc.contributor.author |
Hyttinen, Noora |
|
dc.contributor.author |
Lin, Jack J. |
|
dc.contributor.author |
Kurten, Theo |
|
dc.contributor.author |
Prisle, Nonne L. |
|
dc.date.accessioned |
2020-11-15T00:46:30Z |
|
dc.date.available |
2021-12-18T03:45:39Z |
|
dc.date.issued |
2019-11-07 |
|
dc.identifier.citation |
Elm , J , Hyttinen , N , Lin , J J , Kurten , T & Prisle , N L 2019 , ' Strong Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid Dimers : Implications for Condensation Thermodynamics ' , Journal of Physical Chemistry A , vol. 123 , no. 44 , pp. 9594-9599 . https://doi.org/10.1021/acs.jpca.9b08020 |
|
dc.identifier.other |
PURE: 128430000 |
|
dc.identifier.other |
PURE UUID: 7400b138-b746-4950-89ed-fb6033cb8ff7 |
|
dc.identifier.other |
WOS: 000495771700019 |
|
dc.identifier.other |
ORCID: /0000-0002-6416-4931/work/65309230 |
|
dc.identifier.uri |
http://hdl.handle.net/10138/321512 |
|
dc.description.abstract |
The physical properties of small straight-chain dicarboxylic acids are well known to exhibit even/odd alternations with respect to the carbon chain length. For example, odd numbered diacids have lower melting points and higher saturation vapor pressures than adjacent even numbered diacids. This alternation has previously been explained in terms of solid-state properties, such as higher torsional strain of odd number diacids. Using quantum chemical methods, we demonstrate an additional contribution to this alternation in properties resulting from gas-phase dimer formation. Due to a combination of hydrogen bond strength and torsional strain, dimer formation in the gas phase occurs efficiently for glutaric acid (CS) and pimelic acid (C7) but is unfavorable for succinic acid (C4) and adipic acid (C6). Our results indicate that a significant fraction of the total atmospheric gas-phase concentration of glutaric and pimelic acid may consist of dimers. |
en |
dc.format.extent |
6 |
|
dc.language.iso |
eng |
|
dc.relation.ispartof |
Journal of Physical Chemistry A |
|
dc.rights.uri |
info:eu-repo/semantics/openAccess |
|
dc.subject |
PARTICLE FORMATION |
|
dc.subject |
VAPOR-PRESSURES |
|
dc.subject |
SULFURIC-ACID |
|
dc.subject |
PINIC ACID |
|
dc.subject |
AEROSOLS |
|
dc.subject |
DICARBONYLS |
|
dc.subject |
ALTERNATION |
|
dc.subject |
PRECURSORS |
|
dc.subject |
MOLECULES |
|
dc.subject |
ENERGIES |
|
dc.subject |
116 Chemical sciences |
|
dc.subject |
114 Physical sciences |
|
dc.title |
Strong Even/Odd Pattern in the Computed Gas-Phase Stability of Dicarboxylic Acid Dimers : Implications for Condensation Thermodynamics |
en |
dc.type |
Article |
|
dc.contributor.organization |
Department of Chemistry |
|
dc.contributor.organization |
Institute for Atmospheric and Earth System Research (INAR) |
|
dc.description.reviewstatus |
Peer reviewed |
|
dc.relation.doi |
https://doi.org/10.1021/acs.jpca.9b08020 |
|
dc.relation.issn |
1089-5639 |
|
dc.rights.accesslevel |
openAccess |
|
dc.type.version |
acceptedVersion |
|
Files in this item
Total number of downloads: Loading...
This item appears in the following Collection(s)
Show simple item record