Casteras , J-B & Földes , J 2020 , ' Singular radial solutions for the Lin-Ni-Takagi equation ' , Calculus of Variations and Partial Differential Equations , vol. 59 , no. 5 , 168 . https://doi.org/10.1007/s00526-020-01824-3
Titel: | Singular radial solutions for the Lin-Ni-Takagi equation |
Författare: | Casteras, Jean-Baptiste; Földes, Juraj |
Upphovmannens organisation: | Geometric Analysis and Partial Differential Equations Department of Mathematics and Statistics |
Datum: | 2020-09-13 |
Språk: | eng |
Sidantal: | 20 |
Tillhör serie: | Calculus of Variations and Partial Differential Equations |
ISSN: | 0944-2669 |
DOI: | https://doi.org/10.1007/s00526-020-01824-3 |
Permanenta länken (URI): | http://hdl.handle.net/10138/321645 |
Abstrakt: | We study singular radially symmetric solution to the Lin-Ni-Takagi equation for a supercritical power non-linearity in dimension N >= 3. It is shown that for any ball and any k >= 0, there is a singular solution that satisfies Neumann boundary condition and oscillates at leastktimes around the constant equilibrium. Moreover, we show that the Morse index of the singular solution is finite or infinite if the exponent is respectively larger or smaller than the Joseph-Lundgren exponent. |
Subject: |
ELLIPTIC NEUMANN PROBLEM
LEAST-ENERGY SOLUTIONS POSITIVE SOLUTIONS INTERIOR NONLINEARITY SEGMENTS SPIKES 111 Mathematics |
Referentgranskad: | Ja |
Användningsbegränsning: | openAccess |
Parallelpublicerad version: | publishedVersion |
Totalt antal nerladdningar: Laddar...
Filer | Storlek | Format | Granska |
---|---|---|---|
Casteras_F_ldes ... dialSolutionsForTheL_1.pdf | 294.6Kb | Granska/Öppna |