Singular radial solutions for the Lin-Ni-Takagi equation

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/321645

Citation

Casteras , J-B & Földes , J 2020 , ' Singular radial solutions for the Lin-Ni-Takagi equation ' , Calculus of Variations and Partial Differential Equations , vol. 59 , no. 5 , 168 . https://doi.org/10.1007/s00526-020-01824-3

Titel: Singular radial solutions for the Lin-Ni-Takagi equation
Författare: Casteras, Jean-Baptiste; Földes, Juraj
Medarbetare: University of Helsinki, Geometric Analysis and Partial Differential Equations
Datum: 2020-09-13
Språk: eng
Sidantal: 20
Tillhör serie: Calculus of Variations and Partial Differential Equations
ISSN: 0944-2669
Permanenta länken (URI): http://hdl.handle.net/10138/321645
Abstrakt: We study singular radially symmetric solution to the Lin-Ni-Takagi equation for a supercritical power non-linearity in dimension N >= 3. It is shown that for any ball and any k >= 0, there is a singular solution that satisfies Neumann boundary condition and oscillates at leastktimes around the constant equilibrium. Moreover, we show that the Morse index of the singular solution is finite or infinite if the exponent is respectively larger or smaller than the Joseph-Lundgren exponent.
Subject: ELLIPTIC NEUMANN PROBLEM
LEAST-ENERGY SOLUTIONS
POSITIVE SOLUTIONS
INTERIOR
NONLINEARITY
SEGMENTS
SPIKES
111 Mathematics
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Casteras_F_ldes ... dialSolutionsForTheL_1.pdf 294.6Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post