Multi-Projective Camera-Calibration, Modeling, and Integration in Mobile-Mapping Systems

Show full item record



Permalink

http://urn.fi/URN:ISBN:978-951-51-6846-7
Title: Multi-Projective Camera-Calibration, Modeling, and Integration in Mobile-Mapping Systems
Author: Khoramshahi, Ehsan
Contributor: University of Helsinki, Faculty of Science, Computer Science department
Doctoral Programme in Computer Science
Publisher: Helsingin yliopisto
Date: 2020-12-14
Belongs to series: URN:ISSN:1238-8645
URI: http://urn.fi/URN:ISBN:978-951-51-6846-7
http://hdl.handle.net/10138/321848
Thesis level: Doctoral dissertation (article-based)
Abstract: Optical systems are vital parts of most modern systems such as mobile mapping systems, autonomous cars, unmanned aerial vehicles (UAV), and game consoles. Multi-camera systems (MCS) are commonly employed for precise mapping including aerial and close-range applications. In the first part of this thesis a simple and practical calibration model and a calibration scheme for multi-projective cameras (MPC) is presented. The calibration scheme is enabled by implementing a camera test field equipped with a customized coded target as FGI’s camera calibration room. The first hypothesis was that a test field is necessary to calibrate an MPC. Two commercially available MPCs with 6 and 36 cameras were successfully calibrated in FGI’s calibration room. The calibration results suggest that the proposed model is able to estimate parameters of the MPCs with high geometric accuracy, and reveals the internal structure of the MPCs. In the second part, the applicability of an MPC calibrated by the proposed approach was investigated in a mobile mapping system (MMS). The second hypothesis was that a system calibration is necessary to achieve high geometric accuracies in a multi-camera MMS. The MPC model was updated to consider mounting parameters with respect to GNSS and IMU. A system calibration scheme for an MMS was proposed. The results showed that the proposed system calibration approach was able to produce accurate results by direct georeferencing of multi-images in an MMS. Results of geometric assessments suggested that a centimeter-level accuracy is achievable by employing the proposed approach. A novel correspondence map is demonstrated for MPCs that helps to create metric panoramas. In the third part, the problem of real-time trajectory estimation of a UAV equipped with a projective camera was studied. The main objective of this part was to address the problem of real-time monocular simultaneous localization and mapping (SLAM) of a UAV. An angular framework was discussed to address the gimbal lock singular situation. The results suggest that the proposed solution is an effective and rigorous monocular SLAM for aerial cases where the object is near-planar. In the last part, the problem of tree-species classification by a UAV equipped with two hyper-spectral an RGB cameras was studied. The objective of this study was to investigate different aspects of a precise tree-species classification problem by employing state-of-art methods. A 3D convolutional neural-network (3D-CNN) and a multi-layered perceptron (MLP) were proposed and compared. Both classifiers were highly successful in their tasks, while the 3D-CNN was superior in performance. The classification result was the most accurate results published in comparison to other works.Optiset kuvauslaitteet ovat keskeisessä roolissa moderneissa konenäköön perustuvissa järjestelmissä kuten autonomiset autot, miehittämättömät lentolaitteet (UAV) ja pelikonsolit. Tällaisissa sovelluksissa hyödynnetään tyypillisesti monikamerajärjestelmiä. Väitöskirjan ensimmäisessä osassa kehitetään yksinkertainen ja käytännöllinen matemaattinen malli ja kalibrointimenetelmä monikamerajärjestelmille. Koodatut kohteet ovat keinotekoisia kuvia, joita voidaan tulostaa esimerkiksi A4-paperiarkeille ja jotka voidaan mitata automaattisesti tietokonealgoritmeillä. Matemaattinen malli määritetään hyödyntämällä 3-ulotteista kamerakalibrointihuonetta, johon kehitetyt koodatut kohteet asennetaan. Kaksi kaupallista monikamerajärjestelmää, jotka muodostuvat 6 ja 36 erillisestä kamerasta, kalibroitiin onnistuneesti ehdotetulla menetelmällä. Tulokset osoittivat, että menetelmä tuotti tarkat estimaatit monikamerajärjestelmän geometrisille parametreille ja että estimoidut parametrit vastasivat hyvin kameran sisäistä rakennetta. Työn toisessa osassa tutkittiin ehdotetulla menetelmällä kalibroidun monikamerajärjestelmän mittauskäyttöä liikkuvassa kartoitusjärjestelmässä (MMS). Tavoitteena oli kehittää ja tutkia korkean geometrisen tarkkuuden kartoitusmittauksia. Monikameramallia laajennettiin navigointilaitteiston paikannus ja kallistussensoreihin (GNSS/IMU) liittyvillä parametreillä ja ehdotettiin järjestelmäkalibrointimenetelmää liikkuvalle kartoitusjärjestelmälle. Kalibroidulla järjestelmällä saavutettiin senttimetritarkkuus suorapaikannusmittauksissa. Työssä myös esitettiin monikuville vastaavuuskartta, joka mahdollistaa metristen panoraamojen luonnin monikamarajärjestelmän kuvista. Kolmannessa osassa tutkittiin UAV:​​n liikeradan reaaliaikaista estimointia hyödyntäen yhteen kameraan perustuvaa menetelmää. Päätavoitteena oli kehittää monokulaariseen kuvaamiseen perustuva reaaliaikaisen samanaikaisen paikannuksen ja kartoituksen (SLAM) menetelmä. Työssä ehdotettiin moniresoluutioisiin kuvapyramideihin ja eteneviin suorakulmaisiin alueisiin perustuvaa sovitusmenetelmää. Ehdotetulla lähestymistavalla pystyttiin alentamaan yhteensovittamisen kustannuksia sovituksen tarkkuuden säilyessä muuttumattomana. Kardaanilukko (gimbal lock) tilanteen käsittelemiseksi toteutettiin uusi kulmajärjestelmä. Tulokset osoittivat, että ehdotettu ratkaisu oli tehokas ja tarkka tilanteissa joissa kohde on lähes tasomainen. Suorituskyvyn arviointi osoitti, että kehitetty menetelmä täytti UAV:n reaaliaikaiselle reitinestimoinnille annetut aika- ja tarkkuustavoitteet. Työn viimeisessä osassa tutkittiin puulajiluokitusta käyttäen hyperspektri- ja RGB-kameralla varustettua UAV-järjestelmää. Tavoitteena oli tutkia uusien koneoppimismenetelmien käyttöä tarkassa puulajiluokituksessa ja lisäksi vertailla hyperspektri ja RGB-aineistojen suorituskykyä. Työssä verrattiin 3D-konvoluutiohermoverkkoa (3D-CNN) ja monikerroksista perceptronia (MLP). Molemmat luokittelijat tuottivat hyvän luokittelutarkkuuden, mutta 3D-CNN tuotti tarkimmat tulokset. Saavutettu tarkkuus oli parempi kuin aikaisemmat julkaistut tulokset vastaavilla aineistoilla. Hyperspektrisen ja RGB-datan yhdistelmä tuotti parhaan tarkkuuden, mutta myös RGB-kamera yksin tuotti tarkan tuloksen ja on edullinen ja tehokas aineisto monille luokittelusovelluksille.
Subject: computer Science
Rights: This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.


Files in this item

Total number of downloads: Loading...

Files Size Format View
khoramshahi_ehsan_dissertation_2020.pdf 8.474Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record