CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/322339

Citation

Barnes , D , Davies , J A , Harrison , R A , Byrne , J P , Perry , C H , Bothmer , V , Eastwood , J P , Gallagher , P T , Kilpua , E K J , Möstl , C , Rodriguez , L , Rouillard , A P & Odstrčil , D 2020 , ' CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1 ' , Solar Physics , vol. 295 , no. 11 , 150 . https://doi.org/10.1007/s11207-020-01717-w

Titel: CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from 2008 to 2014 by STEREO/HI-1
Författare: Barnes, D.; Davies, J. A.; Harrison, R. A.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrčil, D.
Medarbetare: University of Helsinki, Department of Physics
Datum: 2020-11-04
Språk: eng
Sidantal: 25
Tillhör serie: Solar Physics
ISSN: 1573-093X
Permanenta länken (URI): http://hdl.handle.net/10138/322339
Abstrakt: We present an analysis of coronal mass ejections (CMEs) observed by the Heliospheric Imagers (HIs) onboard NASA's Solar Terrestrial Relations Observatory (STEREO) spacecraft. Between August 2008 and April 2014 we identify 273 CMEs that are observed simultaneously, by the HIs on both spacecraft. For each CME, we track the observed leading edge, as a function of time, from both vantage points, and apply the Stereoscopic Self-Similar Expansion (SSSE) technique to infer their propagation throughout the inner heliosphere. The technique is unable to accurately locate CMEs when their observed leading edge passes between the spacecraft; however, we are able to successfully apply the technique to 151, most of which occur once the spacecraft-separation angle exceeds 180 degrees, during solar maximum. We find that using a small half-width to fit the CME can result in inferred acceleration to unphysically high velocities and that using a larger half-width can fail to accurately locate the CMEs close to the Sun because the method does not account for CME over-expansion in this region. Observed velocities from SSSE are found to agree well with single-spacecraft (SSEF) analysis techniques applied to the same events. CME propagation directions derived from SSSE and SSEF analysis agree poorly because of known limitations present in the latter.
Subject: 114 Physical sciences
115 Astronomy, Space science
Licens:


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
Barnes2020_Arti ... eHeliosphereIIIAStatis.pdf 2.158Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post