Characterization of plant stress and senescence responses using Arabidopsis white mutant and its suppressor mutants in STAY GREEN1 (SGR1)

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202012094857
Title: Characterization of plant stress and senescence responses using Arabidopsis white mutant and its suppressor mutants in STAY GREEN1 (SGR1)
Author: Sultana, Nasrin
Other contributor: Helsingin yliopisto, Bio- ja ympäristötieteellinen tiedekunta, Bio- ja ympäristötieteellinen tiedekunta
University of Helsinki, Faculty of Biological and Environmental Sciences, Faculty of Biological and Environmental Sciences
Helsingfors universitet, Bio- och miljövetenskapliga fakulteten, Bio- och miljövetenskapliga fakulteten
Publisher: Helsingin yliopisto
Date: 2020
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202012094857
http://hdl.handle.net/10138/322563
Thesis level: master's thesis
Discipline: biotekniikka
Biotechnology
bioteknik
Abstract: Tiivistelmä – Referat – Abstract Plant lives and grows in variable environment and climate conditions. Everyday plants can be confronted with a variety of abiotic (temperature, light, salt, water availability) and biotic stress (pathogens, insects etc). These abiotic and biotic stress can halt plant growth and influence crop productivity. Plant has evolved signaling mechanism and different responses to adapt or respond with these unfavorable environmental conditions. Our group’s previous research identified a new mutant in the model plant Arabidopsis thaliana with a striking phenotype – when the plants ages it progressively becomes yellow and eventually the entire plant is white. The mutant was named “white” after its striking appearance. The phenotype is associated with increased accumulation of mRNA transcript for stress and senescence regulated genes. Mapping of the mutation identified a 4 bp deletion in a gene EGY1 that encodes a metalloprotease located in the chloroplast. To identify molecular mechanisms that regulate this unusual type of premature senescence, a suppressor mutants screen was performed in the white mutant, and three suppressors that restore normal appearance to the plant was identified. Mapping of one of these suppressors, identified a mutation in STAY GREEN1 (SGR1) as a likely candidate. SGR1 encodes the protein that catalyze the first step in chlorophyll breakdown, removal of Mg2+ from chlorophyll. The overall aim of my master thesis was to understand the molecular mechanisms behind the development of the age and chlorophyll related phenotypes in the white mutant and its two suppressors S1 and S2. Furthermore, with gene expression analysis, plant stress and senescence responses were studied in white, S1 and S2. By complementation method I proved that mutations in SGR1 gene caused the development of suppressor mutant phenotype and restoration of wild type allele of SGR1 gene restore white phenotype in suppressor mutant. Measurements of chlorophyll concentration provided further evidence that the mutation in SGR1 stabilizes the suppressor mutant phenotype, stops chlorophyll breakdown and keep the leaves green. Gene expression study using qPCR with marker genes provided insight of molecular changes within these phenotypes.
Subject: SGR1
white
S1
S2


Files in this item

Total number of downloads: Loading...

Files Size Format View
Nasrin_Sultana_Thesis_2020.pdf 2.071Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record