Antibiotic Resistance Genes in Human Gut Microbiota

Show full item record



Permalink

http://urn.fi/URN:NBN:fi:hulib-202012094822
Title: Antibiotic Resistance Genes in Human Gut Microbiota
Author: Henttonen, Kaisu
Contributor: University of Helsinki, Faculty of Biological and Environmental Sciences, Faculty of Biological and Environmental Sciences
Publisher: Helsingin yliopisto
Date: 2020
Language: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202012094822
http://hdl.handle.net/10138/322566
Thesis level: master's thesis
Discipline: perinnöllisyystiede
Genetics
genetik
Abstract: Ihmisen suolistomikrobiota on monimutkainen ja monimuotoinen biljoonien mikrobien ekologinen yhteisö, joka vaikuttaa niin ihmisen normaaliin fysiologiaan kuin lukuisiin sairauksiin ja sairausalttiuksiinkin. Mikrobiotan koostumuksen, toimintojen sekä sen muutosten syiden ja seurauksien ymmärtäminen on tärkeää siihen yhteydessä olevien sairauksien ymmärtämiseksi ja parempien hoitokeinojen kehittämiseksi. Suolistomikrobiotassa on ihmisten välillä yksilöllisiä eroja ja siinä tapahtuu ajan kuluessa muutoksia, joiden takana ovat esim. henkilön ikä, genetiikka, ruokavalio, ympäristö ja erityisesti sairaudet ja antibioottien käyttö. Kun antibioottien käyttö häiritsee suolistomikrobiotaa, muutokset voivat kestää vuosien ajan. Antibioottiresistenssillä on taipumus lisääntyä antibioottien käytön seurauksena. Koska patogeenisten bakteerien antibioottiresistenssiä pidetään merkittävänä terveysuhkana, ihmisen suolistoresistomin (suolistomikrobiotasta löytyvät antibioottiresistenssigeenit eli ARG:t) luonnehdinta on lääketieteen kannalta erittäin kiinnostavaa. Uuden sukupolven sekvensointitekniikat ovat mahdollistaneet myös sellaisten mikrobilajien tutkimuksen, joita ei tällä hetkellä pystytä viljelemään. Metagenomiikka tarjoaa tietoa kaikesta tietystä elinympäristöstä kerätystä geneettisestä materiaalista ja mahdollistaa minkä tahansa kiinnostavien sekvenssien (esim. ARG-sekevenssit) etsimisen siitä. Parkinsonin taudin (Parkinson’s disease, PD) kehittymisen oletetaan alkavan enteerisestä (ruoansulatuskanavaa ohjaavasta) hermostosta ja etenevän sieltä kohti keskushermostoa. Antibioottien käyttö saattaa liittyä PD:n kehittymiseen suolistomikrobiotavaikutusten kautta, ja koska suolistoresistomi muokkaa näitä vaikutuksia, tämän tutkimuksen tarkoituksena oli etsiä antibioottiresistenssigeenejä koodaavia sekvenssejä ihmisen suoliston metagenomidatasta, joka oli peräisin PD-sairaiden ja terveiden kontrollien ulostenäytteistä. Tarkoituksena oli myös selvittää mahdollisia eroja antibioottiresistenssigeenien esiintymisessä PD-sairaiden ja terveiden kontrollihenkilöiden välillä. ARG-sekvenssien etsimiseen metagenomidatasta käytettiin DeepARG-ohjelmaa. Tilastollinen analyysi (alfadiversiteetti, monimuuttuja-analyysi ja runsausanalyysi) suoritettiin R-ohjelmointia RStudiossa käyttäen. DeepARG löysi 192 näytteestä 840 erilaista antibioottiresistenssigeeniä, jotka kuuluivat 29 eri ARG-luokkaan. Alfadiversiteettianalyysi osoitti pienen arvioidun eron PD- ja kontrolliryhmien välillä, mikä tarkoittaa, että ARG-monimuotoisuus on mahdollisesti hieman korkeampi PD-sairaiden keskuudessa kuin terveillä henkilöillä. Monimuuttuja-analyysit eivät tuottaneet mitään vahvaa näyttöä siitä, että tutkittujen ryhmien välillä olisi biologisesti merkittävää eroa. 16 ARG:n runsauden havaittiin poikkeavan toisistaan PD-sairaiden ja terveiden välillä. BepE, cmeA, cmlv, dfrE, mefC, msrB, opcM, oprM ja RbpA -geenien runsauden havaittiin kasvaneen, ja arnC, BN537_02049, dfrK, mgrA, murA, tet35 ja tetT -geenien runsauden todettiin vähentyneen PD-sairaissa verrattuna terveisiin. Nämä ARG:t eivät vaikuta liittyvän toisiinsa muuten kuin siten, että osalla on keskenään sama resistenssin kohde tai resistenssimekanismi. Meneillään olevan, vielä julkaisemattoman epidemiologisen PD:n ja antibioottien yhteyttä selvittävän tutkimuksen valossa vain kolmella ARG:llä (msrB, mefC ja dfrE) näyttäisi olevan jonkinlaista merkitystä PD:n kehittymisessä, mutta niiden vaikutukset, mikäli niitä on, ovat mitä todennäköisimmin vähäisiä. Kahdeksan ARG-luokan runsauden osoitettiin poikkeavan toisistaan PD-sairaiden ja terveiden välillä. Basitrasiini-, fosfomysiini- ja polymyksiiniluokat osoittivat alentunutta ja kloramfenikoli-, fosmidomysiini-, puromysiini-, rifampisiini- ja sulfonamidiluokat lisääntynyttä runsautta PD-sairaissa verrattuna terveisiin. Muutos tietyn ARG:n runsaudessa voi heijastella muutosta niiden bakteerien runsaudessa, jotka ko. resistenssigeeniä kantavat. Mikäli näin on, jatkokysymyksiä ovat, kuinka paljon bakteerin runsauden muutos johtuu tiettyjen antibioottien käytöstä ja kuinka paljon vaikuttavat ympäristötekijät. Vaatii myös lisätutkimusta selvittää, onko tässä tutkimuksessa kiinnostaviksi osoittauneihin resistenssigeeneihin assosioituneilla antibiooteilla todellinen rooli PD:n kehittymisessä. Tämän tutkimuksen tulokset yhdistetään myöhemmin tietoon, jota saadaan meneillään olevista antibioottien käyttöä väestössä ja PD-potilailla selvittävistä tutkimuksista. Siinä missä tämä tutkimus ei keskittynyt etsimään uusia resistenssigeenejä, käytettyä metagenomidataa voitaisiin tulevaisuudessa soveltaa myös siihen tarkoitukseen.The human gut is inhabited by gut microbiota, a complex and diverse ecological community of trillions of microbes that affect both the normal human physiology and countless disease states and susceptibilities. Understanding the composition, functions and the causes and effects of changes in the microbiota is invaluable for understanding diseases that are connected to the microbiota and developing better treatments to the diseases. The gut microbiota varies between individuals and keeps changing over time. Behind the variability are e.g. the person’s age, genetics, diet, environment, and especially diseases and the use of antibiotics. When antibiotic use disrupts the gut microbiota, the changes can persist for years. Antibiotic resistance tends to increase after the use of antibiotics. Since antibiotic resistance in bacterial pathogens is considered a major health threat, the characterization of the human gut resistome (the antibiotic resistance genes (ARGs) found in the gut microbiota) is of great medical interest. Next-generation sequencing techniques have enabled studying also those microbe species that cannot be cultured at the moment. Metagenomics provides information on all genetic material collected from a given environment and enables searching for any sequences of interest within it, e.g. ARG sequences. The development of Parkinson’s disease (PD) is suspected to begin in the enteric nervous system and spread from there toward the central nervous system. The use of antibiotics could be linked to PD through their effects on gut microbiota, and since these effects are modified by the gut resistome, the aim of this study was to find gene sequences coding antibiotic resistance in human gut metagenomics data originating from stool samples of PD patients and healthy controls, and to find out potential differences in the occurrence of antibiotic resistance genes in the gut microbes of the two study groups. DeepARG was the chosen method for searching antibiotic resistance gene sequences in the metagenomics data. The statistical data analyses, including alpha diversity, multivariate analyses, and differential abundance analysis, were performed with the R statistical programming language in RStudio. DeepARG found 840 different ARGs in 192 samples. The ARGs belonged to 29 different ARG classes. The alpha diversity analysis showed a small estimated difference between PD and control groups indicating a possible slightly higher ARG diversity in the PD group. Multivariate analysis did not give any strong suggestions of definite biologically meaningful differences between the study groups. 16 ARGs were deemed differentially abundant in the study groups. BepE, cmeA, cmlv, dfrE, mefC, msrB, opcM, oprM and RbpA seemed to have increased abundance, and arnC, BN537_02049, dfrK, mgrA, murA, tet35 and tetT were suggested to have decreased abundance in PD patients compared to the healthy controls. These ARGs do not appear interconnected in any other way except for some sharing antibiotic types to which they offer resistance, and some having similar resistance mechanisms. In the light of an ongoing, unpublished epidemiological study of the connection between PD and the use of antibiotics it would seem that only three ARGs (msrB, mefC and dfrE) might be somehow relevant in PD development, but their effects, if any, are most likely minor. Eight ARG classes were shown to have differential abundance between PD patients and healthy controls. Bacitracin, fosfomycin and polymyxin classes showed decrease and chloramphenicol, fosmidomycin, puromycin, rifampin and sulfonamide classes showed increase in abundance in PD compared to controls. The change in the abundance of a certain ARG could reflect change in the abundance of the bacteria carrying that resistance gene. If so, the follow-up questions would be how much change in the abundance of bacteria is due to the use of certain antibiotics and how much is caused by environmental factors. It also remains to be studied whether specific antibiotics associated with the ARGs that in this study showed differential abundance in PD patients and healthy controls might have an actual role in PD development. The results of this thesis study are later to be combined with and further studied alongside information coming from ongoing studies on antibiotics use in general population and in PD patients. While this study did not concentrate its efforts into finding novel ARGs, the metagenomics dataset could also in the future be applied for that purpose.
Subject: antibioottiresistenssi
ihmisen suolistomikrobiota
suoliston resistomi
metagenomiikka
Parkinsonin tauti
antibiotic resistance
ARG
human gut microbiota
gut resistome
metagenomics
DeepARG
Parkinson’s disease
PD


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show full item record