Sense-aware Unsupervised Machine Translation

Show simple item record

dc.contributor Helsingin yliopisto, Humanistinen tiedekunta fi
dc.contributor University of Helsinki, Faculty of Arts en
dc.contributor Helsingfors universitet, Humanistiska fakulteten sv
dc.contributor.author Vahtola, Teemu
dc.date.issued 2020
dc.identifier.uri URN:NBN:fi:hulib-202012155146
dc.identifier.uri http://hdl.handle.net/10138/322924
dc.description.abstract Modernit sanaupotusmenetelmät, esimerkiksi Word2vec, eivät mallinna leksikaalista moniselitteisyyttä luottaessaan kunkin sanan mallinnuksen yhden vektorirepresentaation varaan. Näin ollen leksikaalinen moniselitteisyys aiheuttaa ongelmia konekääntimille ja voi johtaa moniselitteisten sanojen käännökset usein harhaan. Työssä tarkastellaan mahdollisuutta mallintaa moniselitteisiä sanoja merkitysupotusmenetelmän (sense embeddings) avulla ja hyödynnetään merkitysupotuksia valvomattoman konekäännösohjelman (unsupervised machine translation) opetuksessa kieliparilla Englanti-Saksa. Siinä missä sanaupotusmenetelmät oppivat yhden vektorirepresentaation kullekin sanalle, merkitysupotusmenetelmän avulla voidaan oppia useita representaatioita riippuen aineistosta tunnistettujen merkitysten määrästä. Näin ollen yksi valvomattoman konekääntämisen perusmenetelmistä, sanaupotusten kuvaus joukosta lähde- ja kohdekielten yksikielisiä vektorirepresentaatioita jaettuun kaksikieliseen vektoriavaruuteen, voi tuottaa paremman kuvauksen, jossa moniselitteiset sanat mallintuvat paremmin jaetussa vektoriavaruudessa. Tämä mallinnustapa voi vaikuttaa positiivisesti konekäännösohjelman kykyyn kääntää moniselitteisiä sanoja. Työssä merkitysupotusmalleja käytetään saneiden alamerkitysten yksiselitteistämiseen, ja tämän myötä jokainen konekäännösmallin opetusaineistossa esiintyvä sane annotoidaan merkitystunnisteella. Näin ollen konekäännösmalli hyödyntää sanaupotusten sijaan merkitysupotuksia oppiessaan kääntämään lähde- ja kohdekielten välillä. Työssä opetetaan tilastollinen konekäännösmalli käyttäen tavanomaista sanaupotusmenetelmää. Tämän lisäksi opetetaan sekä tilastollinen että neuroverkkokonekäännösmalli käyttäen merkitysupotusmenetelmää. Aineistona työssä käytetään WMT-14 News Crawl -aineistoa. Opetettujen mallien tuloksia verrataan aiempaan konekäännöstutkimuksen automaattisessa arvioinnissa hyvin menestyneeseen tilastolliseen konekäännösmalliin. Lisäksi työssä suoritetaan tulosten laadullinen arviointi, jossa keskitytään yksittäisten moniselitteisten sanojen kääntämiseen. Tulokset osoittavat, että käännösmallit voivat hyötyä merkitysupotusmenetelmästä. Tarkasteltujen esimerkkien perusteella merkitysupotusmenetelmää hyödyntävät konekäännösmallit onnistuvat kääntämään moniselitteisiä sanoja sanaupotusmenetelmää hyödyntävää mallia tarkemmin vastaamaan referenssikäännöksissä valittuja käännöksiä. Näin ollen laadullisen arvioinnin kohdistuessa yksittäisten moniselitteisten sanojen kääntämiseen, merkitysupotusmenetelmästä näyttää olevan hyötyä konekäännösmallien opetuksessa. fi
dc.language.iso eng
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.subject konekääntäminen
dc.subject machine translation
dc.subject unsupervised machine translation
dc.subject sense embeddings
dc.subject machine learning
dc.title Sense-aware Unsupervised Machine Translation en
dc.type.ontasot pro gradu -tutkielmat fi
dc.type.ontasot master's thesis en
dc.type.ontasot pro gradu-avhandlingar sv
dct.identifier.urn URN:NBN:fi:hulib-202012155146
dc.subject.specialization Kieliteknologia fi
dc.subject.specialization Language Technology en
dc.subject.specialization Språkteknologi sv
dc.subject.degreeprogram Kielellisen diversiteetin ja digitaalisten menetelmien maisteriohjelma fi
dc.subject.degreeprogram Master's Programme Linguistic Diversity in the Digital Age en
dc.subject.degreeprogram Magisterprogrammet i språklig diversitet och digitala metoder sv

Files in this item

Total number of downloads: Loading...

Files Size Format View
Vahtola_Teemu_tutkielma_2020.pdf 590.1Kb PDF View/Open

This item appears in the following Collection(s)

Show simple item record