Creating Maps of Science Using Topic Models : A Reproducibility Study

Show simple item record

dc.contributor Helsingin yliopisto, Humanistinen tiedekunta fi
dc.contributor University of Helsinki, Faculty of Arts en
dc.contributor Helsingfors universitet, Humanistiska fakulteten sv
dc.contributor.author An, Yu
dc.date.issued 2020
dc.identifier.uri URN:NBN:fi:hulib-202012155145
dc.identifier.uri http://hdl.handle.net/10138/322948
dc.description.abstract Maps of science, or cartography of scientific fields, provide insights into the state of scientific knowledge. Analogous to geographical maps, maps of science present the fields as positions and show the paths connecting each other, which can serve as an intuitive illustration for the history of science or a hint to spot potential opportunities for collaboration. In this work, I investigate the reproducibility of a method to generate such maps. The idea of the method is to derive representations representations for the given scientific fields with topic models and then perform hierarchical clustering on these, which in the end yields a tree of scientific fields as the map. The result is found unreproducible, as my result obtained on the arXiv data set (~130k articles from arXiv Computer Science) shows an inconsistent structure from the one in the reference study. To investigate the cause of the inconsistency, I derive a second set of maps using the same method and an adjusted data set, which is constructed by re-sampling the arXiv data set to a more balanced distribution. The findings show the confounding factors in the data cannot account for the inconsistency; instead, it should be due to the stochastic nature of the unsupervised algorithm. I also improve the approach by using ensemble topic models to derive representations. It is found the method to derive maps of science can be reproducible when it uses an ensemble topic model fused from a sufficient number of base models. en
dc.language.iso eng
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.subject machine learning
dc.subject text mining
dc.subject topic models
dc.subject scientometrics
dc.title Creating Maps of Science Using Topic Models : A Reproducibility Study en
dc.type.ontasot pro gradu -tutkielmat fi
dc.type.ontasot master's thesis en
dc.type.ontasot pro gradu-avhandlingar sv
dct.identifier.urn URN:NBN:fi:hulib-202012155145
dc.subject.specialization Kieliteknologia fi
dc.subject.specialization Language Technology en
dc.subject.specialization Språkteknologi sv
dc.subject.degreeprogram Kielellisen diversiteetin ja digitaalisten menetelmien maisteriohjelma fi
dc.subject.degreeprogram Master's Programme Linguistic Diversity in the Digital Age en
dc.subject.degreeprogram Magisterprogrammet i språklig diversitet och digitala metoder sv

Files in this item

Total number of downloads: Loading...

Files Size Format View
An_Yu_thesis_2020.pdf 4.142Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record