The distribution of talc within the Kevitsa Ni-Cu-PGE mine, Finland

Show simple item record

dc.contributor Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta fi
dc.contributor University of Helsinki, Faculty of Science en
dc.contributor Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten sv
dc.contributor.author McDonald, Isabel
dc.date.issued 2020
dc.identifier.uri URN:NBN:fi:hulib-202101081115
dc.identifier.uri http://hdl.handle.net/10138/324287
dc.description.abstract Talc is a problematic alteration mineral at the Kevitsa Ni-Cu-(PGE) mine in Sodankylä, Finland, and its distribution and control were assessed in this thesis. Kevitsa is a polymetallic mine hosted in an ultramafic intrusion, extracting Ni, Cu, Co, Au, Pt and Pd, which are of increasing importance in green energy technologies. Talc – a common alteration product in ultramafic rocks – detrimentally interferes with the recovery of copper in the flotation stage of ore processing when concentrations exceed 5 wt. %, thus affecting the economics of mine operations. It was found different talc concentrations had different spatial associations and controls, with three dominant styles identified, and a multi-stage genesis of talc alteration is proposed. The talc styles identified in the study are as follows: (style 1) pervasive talc-chlorite alteration, (style 2) talc-dolomite alteration haloes proximal to dolomite veins and (style 3) talc on brittle structures, associated with magnetite. Low values of talc between 0.2-0.5 wt.% (style 1) were found to have no preferential spatial distribution, occurring as background alteration throughout the intrusion. Intermediate values (between 1-5 wt. %) were associated with late brittle fractures and structures (style 3), with a notable association with the NE-flt-rv1 fault zone. Style (2) was found to have a dominant structural control, specifically being associated with north-south trending structures. Dominant structures with this association identified are NS-flt1_flt-002 and NS-flt-2_flt-009. Highest values (commonly exceeding >10 wt. %) manifest themselves as alteration haloes proximal to veins, where talc-carbonate replaces the intercumulus mineral phases. Here it is proposed that ‘low talc’ alteration, style (1), was the first talc association to occur, generated by late magmatic fluids or regional metamorphism accompanying amphibole and serpentine alteration. The association observed as style (2) was likely generated by the infilling of north-south trending structures by carbonate-talc veins through metasomatism by a CO2 rich metamorphic fluid, perhaps delivered by a deep-seated structure, often generating talc values in excess of 10 wt.%. The third stage is proposed to be talc enrichment via meteoric fluid percolation, after exhumation. This generated talc along brittle structures associated with magnetite style (3), and talc-carbonate concentrations may also be upgraded at this stage. Further enrichment of talc is observed at the surface, attributed to freeze thaw-cycles of permafrost upgrading talc values. The identification of these processes and controls on talc will not only have implications for the economics of Kevitsa as high talc zones can be avoided, but findings may have useful applications for mining of similar deposits in the Central Lapland Greenstone belt such as the nearby Sakatti Cu-Ni-(PGE) project, when it enters production. en
dc.language.iso en
dc.publisher Helsingin yliopisto fi
dc.publisher University of Helsinki en
dc.publisher Helsingfors universitet sv
dc.subject Kevitsa
dc.subject ore geology
dc.subject magmatic Ni-Cu-PGE deposits
dc.subject ultramafic intrusions
dc.subject Central Lapland Greenstone Belt
dc.subject alteration
dc.subject talc
dc.title The distribution of talc within the Kevitsa Ni-Cu-PGE mine, Finland en
dc.type.ontasot pro gradu -tutkielmat fi
dc.type.ontasot master's thesis en
dc.type.ontasot pro gradu-avhandlingar sv
dc.subject.discipline none und
dct.identifier.urn URN:NBN:fi:hulib-202101081115

Files in this item

Total number of downloads: Loading...

Files Size Format View
McDonald_Isabel_Pro_gradu_2020.pdf 7.114Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record