Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017

Show full item record



Permalink

http://hdl.handle.net/10138/324649

Citation

Wang , Y , Gao , W , Wang , S , Song , T , Gong , Z , Ji , D , Wang , L , Liu , Z , Tang , G , Huo , Y , Tian , S , Li , J , Li , M , Yang , Y , Chu , B , Petäjä , T , Kerminen , V-M , He , H , Hao , J , Kulmala , M , Wang , Y & Zhang , Y 2020 , ' Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017 ' , National science review , vol. 7 , no. 8 , pp. 1331-1339 . https://doi.org/10.1093/nsr/nwaa032

Title: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017
Author: Wang, Yonghong; Gao, Wenkang; Wang, Shuai; Song, Tao; Gong, Zhengyu; Ji, Dongsheng; Wang, Lili; Liu, Zirui; Tang, Guiqian; Huo, Yanfeng; Tian, Shili; Li, Jiayun; Li, Mingge; Yang, Yuan; Chu, Biwu; Petäjä, Tuukka; Kerminen, Veli-Matti; He, Hong; Hao, Jiming; Kulmala, Markku; Wang, Yuesi; Zhang, Yuanhang
Contributor: University of Helsinki, INAR Physics
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
University of Helsinki, Institute for Atmospheric and Earth System Research (INAR)
Date: 2020-08
Language: eng
Number of pages: 9
Belongs to series: National science review
ISSN: 2095-5138
URI: http://hdl.handle.net/10138/324649
Abstract: Although much attention has been paid to investigating and controlling air pollution in China, the trends of air-pollutant concentrations on a national scale have remained unclear. Here, we quantitatively investigated the variation of air pollutants in China using long-term comprehensive data sets from 2013 to 2017, during which Chinese government made major efforts to reduce anthropogenic emission in polluted regions. Our results show a significant decreasing trend in the PM2.5 concentration in heavily polluted regions of eastern China, with an annual decrease of similar to 7% compared with measurements in 2013. The measured decreased concentrations of SO2, NO2 and CO (a proxy for anthropogenic volatile organic compounds) could explain a large fraction of the decreased PM2.5 concentrations in different regions. As a consequence, the heavily polluted days decreased significantly in corresponding regions. Concentrations of organic aerosol, nitrate, sulfate, ammonium and chloride measured in urban Beijing revealed a remarkable reduction from 2013 to 2017, connecting the decreases in aerosol precursors with corresponding chemical components closely. However, surface-ozone concentrations showed increasing trends in most urban stations from 2013 to 2017, which indicates stronger photochemical pollution. The boundary-layer height in capital cities of eastern China showed no significant trends over the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta regions from 2013 to 2017, which confirmed the reduction in anthropogenic emissions. Our results demonstrated that the Chinese government was successful in the reduction of particulate matter in urban areas from 2013 to 2017, although the ozone concentration has increased significantly, suggesting a more complex mechanism of improving Chinese air quality in the future.
Subject: air pollution
clean-air action
particulate matter
surface ozone
China
chemical composition
HAZE POLLUTION
AIR-POLLUTION
ANTHROPOGENIC EMISSIONS
NORTHERN CHINA
BLACK CARBON
HEAVY HAZE
URBAN
MECHANISM
SULFATE
FOG
1172 Environmental sciences
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
nwaa032.pdf 937.9Kb PDF View/Open

This item appears in the following Collection(s)

Show full item record