PYLFIRE : Python implementation of likelihood-free inference by ratio estimation

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/326329

Citation

Kokko , J , Remes , U , Thomas , O , Pesonen , H & Corander , J 2019 , ' PYLFIRE : Python implementation of likelihood-free inference by ratio estimation ' , Wellcome open research , vol. 4 , 197 . https://doi.org/10.12688/wellcomeopenres.15583.1

Titel: PYLFIRE : Python implementation of likelihood-free inference by ratio estimation
Författare: Kokko, J.; Remes, U.; Thomas, Owen; Pesonen, H.; Corander, J.
Upphovmannens organisation: Department of Mathematics and Statistics
Jukka Corander / Principal Investigator
Biostatistics Helsinki
Datum: 2019-12-10
Språk: eng
Sidantal: 13
Tillhör serie: Wellcome open research
ISSN: 2398-502X
DOI: https://doi.org/10.12688/wellcomeopenres.15583.1
Permanenta länken (URI): http://hdl.handle.net/10138/326329
Abstrakt: Likelihood-free inference for simulator-based models is an emerging methodological branch of statistics which has attracted considerable attention in applications across diverse fields such as population genetics, astronomy and economics. Recently, the power of statistical classifiers has been harnessed in likelihood-free inference to obtain either point estimates or even posterior distributions of model parameters. Here we introduce PYLFIRE, an open-source Python implementation of the inference method LFIRE (likelihood-free inference by ratio estimation) that uses penalised logistic regression. PYLFIRE is made available as part of the general ELFI inference software http://elfi.ai to benefit both the user and developer communities for likelihood-free inference. © 2019 Kokko J et al.
Beskrivning: Export Date: 10 February 2021 Correspondence Address: Kokko, J.; Department of Mathematics and Statistics, Finland; email: jan.kokko@helsinki.fi
Subject: 112 Statistics and probability
density-ratio estimation
likelihood-free inference
logistic regression
summary statistics selection
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
68fe8f6e_1aaf_4 ... dda505_15583_jan_kokko.pdf 938.9Kb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post