An inverse random source problem in a stochastic fractional diffusion equation

Visa fullständig post



Permalänk

http://hdl.handle.net/10138/326825

Citation

Niu , P , Helin , T & Zhang , Z 2020 , ' An inverse random source problem in a stochastic fractional diffusion equation ' , Inverse Problems , vol. 36 , no. 4 , 045002 . https://doi.org/10.1088/1361-6420/ab532c

Titel: An inverse random source problem in a stochastic fractional diffusion equation
Författare: Niu, Pingping; Helin, Tapio; Zhang, Zhidong
Upphovmannens organisation: Department of Mathematics and Statistics
Inverse Problems
Datum: 2020-04
Språk: eng
Sidantal: 23
Tillhör serie: Inverse Problems
ISSN: 0266-5611
DOI: https://doi.org/10.1088/1361-6420/ab532c
Permanenta länken (URI): http://hdl.handle.net/10138/326825
Abstrakt: In this work the authors consider an inverse source problem the stochastic fractional diffusion equation. The interested inverse problem is to reconstruct the unknown spatial functions f and g (the latter up to the sign) in the source by the statistics of the final time data u(x, T). Some direct problem results are proved at first, such as the existence, uniqueness, representation and regularity of the solution. Then a reconstruction scheme for f and g up to the sign is given. To tackle the ill-posedness, Tikhonov regularization is adopted and some numerical results are displayed.
Subject: inverse problem
stochastic fractional diffusion equation
random source
Tikhonov regularization
regularity
partial measurements
correlation based imaging
ANOMALOUS DIFFUSION
SCATTERING PROBLEM
MAXIMUM PRINCIPLE
RANDOM-WALKS
SPACE
111 Mathematics
Referentgranskad: Ja
Användningsbegränsning: openAccess
Parallelpublicerad version: acceptedVersion


Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
1810.03144.pdf 1.683Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post