An inverse random source problem in a stochastic fractional diffusion equation

Show simple item record

dc.contributor.author Niu, Pingping
dc.contributor.author Helin, Tapio
dc.contributor.author Zhang, Zhidong
dc.date.accessioned 2021-02-19T22:55:53Z
dc.date.available 2021-12-18T03:45:28Z
dc.date.issued 2020-04
dc.identifier.citation Niu , P , Helin , T & Zhang , Z 2020 , ' An inverse random source problem in a stochastic fractional diffusion equation ' , Inverse Problems , vol. 36 , no. 4 , 045002 . https://doi.org/10.1088/1361-6420/ab532c
dc.identifier.other PURE: 139058333
dc.identifier.other PURE UUID: 14e1d1e5-8448-4feb-ab84-892bdc25d539
dc.identifier.other WOS: 000537452200002
dc.identifier.uri http://hdl.handle.net/10138/326825
dc.description.abstract In this work the authors consider an inverse source problem the stochastic fractional diffusion equation. The interested inverse problem is to reconstruct the unknown spatial functions f and g (the latter up to the sign) in the source by the statistics of the final time data u(x, T). Some direct problem results are proved at first, such as the existence, uniqueness, representation and regularity of the solution. Then a reconstruction scheme for f and g up to the sign is given. To tackle the ill-posedness, Tikhonov regularization is adopted and some numerical results are displayed. en
dc.format.extent 23
dc.language.iso eng
dc.relation.ispartof Inverse Problems
dc.rights.uri info:eu-repo/semantics/openAccess
dc.subject inverse problem
dc.subject stochastic fractional diffusion equation
dc.subject random source
dc.subject Tikhonov regularization
dc.subject regularity
dc.subject partial measurements
dc.subject correlation based imaging
dc.subject ANOMALOUS DIFFUSION
dc.subject SCATTERING PROBLEM
dc.subject MAXIMUM PRINCIPLE
dc.subject RANDOM-WALKS
dc.subject SPACE
dc.subject 111 Mathematics
dc.title An inverse random source problem in a stochastic fractional diffusion equation en
dc.type Article
dc.contributor.organization Department of Mathematics and Statistics
dc.contributor.organization Inverse Problems
dc.description.reviewstatus Peer reviewed
dc.relation.doi https://doi.org/10.1088/1361-6420/ab532c
dc.relation.issn 0266-5611
dc.rights.accesslevel openAccess
dc.type.version acceptedVersion

Files in this item

Total number of downloads: Loading...

Files Size Format View
1810.03144.pdf 1.683Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record