Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants

Show full item record



Permalink

http://hdl.handle.net/10138/328845

Citation

Rytteri , S , Kuussaari , M & Saastamoinen , M 2021 , ' Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants ' , Oikos , vol. 130 , no. 5 , pp. 753-765 . https://doi.org/10.1111/oik.07653

Title: Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants
Author: Rytteri, Susu; Kuussaari, Mikko; Saastamoinen, Marjo
Contributor: University of Helsinki, Research Centre for Ecological Change
University of Helsinki, Helsinki Institute of Life Science HiLIFE
Date: 2021-05
Language: eng
Number of pages: 13
Belongs to series: Oikos
ISSN: 0030-1299
URI: http://hdl.handle.net/10138/328845
Abstract: Climate change affects insects in several ways, including phenological shifts that may cause asynchrony between herbivore insects and their host plants. Insect larvae typically have limited movement capacity and are consequently dependent on the microhabitat conditions of their immediate surroundings. Based on intensive field monitoring over two springs and on larger-scale metapopulation-level survey over the same years, we used Bayesian spatial regression modelling to study the effects of weather and microclimatic field conditions on the development and survival of post-diapause larvae of the Glanville fritillary butterfly Melitaea cinxia on its northern range edge. Moreover, we assessed whether the observed variation in growth and survival in a spring characterized by exceptionally warm weather early in the season translated into population dynamic effects on the metapopulation scale. While similar weather conditions enhanced larval survival and growth rate in the spring, microclimatic conditions affected survival and growth contrastingly due to the phenological asynchrony between larvae and their host plants in microclimates that supported fastest growth. In the warmest microclimates, larvae reached temperatures over 20 degrees C above ambient leading to increased feeding, which was not supported by the more slowly growing host plants. At the metapopulation level, population growth rate was highest in local populations with heterogeneous microhabitats. We demonstrate how exceptionally warm weather early in the spring caused a phenological asynchrony between butterfly larvae and their host plants. Choice of warmest microhabitats for oviposition is adaptive under predominant conditions, but it may become maladaptive if early spring temperatures rise. Such conditions may lead to larvae breaking diapause earlier without equally advancing host plant growth. Microclimatic variability within and among populations is likely to have a crucial buffering effect against climate change in many insects.
Subject: heterogeneous microhabitat
Melitaea cinxia
optimal body temperature
oviposition site choice
phenology mismatch
plant&#8211
herbivore interaction
weather
1181 Ecology, evolutionary biology
Rights:


Files in this item

Total number of downloads: Loading...

Files Size Format View
oik.07653.pdf 1.262Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record