Computer vision based planogram compliance evaluation

Näytä kaikki kuvailutiedot



Pysyväisosoite

http://urn.fi/URN:NBN:fi:hulib-202106092585
Julkaisun nimi: Computer vision based planogram compliance evaluation
Tekijä: Laitala, Julius
Muu tekijä: Helsingin yliopisto, Matemaattis-luonnontieteellinen tiedekunta
University of Helsinki, Faculty of Science
Helsingfors universitet, Matematisk-naturvetenskapliga fakulteten
Julkaisija: Helsingin yliopisto
Päiväys: 2021
Kieli: eng
URI: http://urn.fi/URN:NBN:fi:hulib-202106092585
http://hdl.handle.net/10138/330784
Opinnäytteen taso: pro gradu -tutkielmat
Koulutusohjelma: Tietojenkäsittelytieteen maisteriohjelma
Master's Programme in Computer Science
Magisterprogrammet i datavetenskap
Opintosuunta: Algoritmit
Algorithms
Algoritmer
Tiivistelmä: Arranging products in stores according to planograms, optimized product arrangement maps, is important for keeping up with the highly competitive modern retail market. The planograms are realized into product arrangements by humans, a process which is prone to mistakes. Therefore, for optimal merchandising performance, the planogram compliance of the arrangements needs to be evaluated from time to time. We investigate utilizing a computer vision problem setting – retail product detection – to automate planogram compliance evaluation. We introduce the relevant problems, the state-of- the-art approaches for solving them and background information necessary for understanding them. We then propose a computer vision based planogram compliance evaluation pipeline based on the current state of the art. We build our proposed models and algorithms using PyTorch, and run tests against public datasets and an internal dataset collected from a large Nordic retailer. We find that while the retail product detection performance of our proposed approach is quite good, the planogram compliance evaluation performance of our whole pipeline leaves a lot of room for improvement. Still, our approach seems promising, and we propose multiple ways for improving the performance enough to enable possible real world utility. The code used for our experiments and the weights for our models are available at https://github.com/laitalaj/cvpce
Avainsanat: computer vision
object detection
retail product detection
planogram compliance


Tiedostot

Latausmäärä yhteensä: Ladataan...

Tiedosto(t) Koko Formaatti Näytä
Laitala_Julius_2021.pdf 36.61MB PDF Avaa tiedosto

Viite kuuluu kokoelmiin:

Näytä kaikki kuvailutiedot