Heterogeneous dynamics in partially disordered proteins

Visa fullständig post




Virtanen , S , Kiirikki , A M , Mikula , K M , Iwai , H & Ollila , O H S 2020 , ' Heterogeneous dynamics in partially disordered proteins ' , Physical Chemistry Chemical Physics , vol. 22 , no. 37 , pp. 21185-21196 . https://doi.org/10.1039/d0cp03473h

Titel: Heterogeneous dynamics in partially disordered proteins
Författare: Virtanen, Salla; Kiirikki, Anne M.; Mikula, Kornelia M.; Iwai, Hideo; Ollila, O. H. Samuli
Upphovmannens organisation: Biochemistry and Biotechnology
Institute of Biotechnology
Hideo Iwai / Principal Investigator
Doctoral Programme in Drug Research
Biophysical chemistry
Datum: 2020-10-07
Språk: eng
Sidantal: 12
Tillhör serie: Physical Chemistry Chemical Physics
ISSN: 1463-9076
DOI: https://doi.org/10.1039/d0cp03473h
Permanenta länken (URI): http://hdl.handle.net/10138/330837
Abstrakt: Importance of disordered protein regions is increasingly recognized in biology, but their characterization remains challenging due to the lack of suitable experimental and theoretical methods. NMR experiments can detect multiple timescale dynamics and structural details of disordered protein regions, but their detailed interpretation is often difficult. Here we combine protein backbone(15)N spin relaxation data with molecular dynamics (MD) simulations to detect not only heterogeneous dynamics of large partially disordered proteins but also their conformational ensembles. We observed that the rotational dynamics of folded regions in partially disordered proteins is dominated by similar rigid body rotation as in globular proteins, thereby being largely independent of flexible disordered linkers. Disordered regions, on the other hand, exhibit complex rotational motions with multiple timescales below similar to 30 ns which are difficult to detect from experimental data alone, but can be captured by MD simulations. Combining MD simulations and backbone(15)N spin relaxation data, measured applying segmental isotopic labeling with salt-inducible split intein, we resolved the conformational ensemble and dynamics of partially disordered periplasmic domain of TonB protein fromHelicobacter pyloricontaining 250 residues. To demonstrate the universality of our approach, it was applied also to the partially disordered region of chicken Engrailed 2. Our results pave the way in understanding how TonB transfers energy from inner membrane to the outer membrane receptors in Gram-negative bacteria, as well as the function of other proteins with disordered domains.
114 Physical sciences
116 Chemical sciences
Referentgranskad: Ja
Licens: cc_by
Användningsbegränsning: openAccess
Parallelpublicerad version: publishedVersion

Filer under denna titel

Totalt antal nerladdningar: Laddar...

Filer Storlek Format Granska
d0cp03473h.pdf 5.744Mb PDF Granska/Öppna

Detta dokument registreras i samling:

Visa fullständig post